Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 016102    DOI: 10.1088/0256-307X/28/1/016102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Ion-implanted Mechanism of the Deposition Process for Diamond-Like Carbon Films
WANG Xue-Min1, WU Wei-Dong1**, WANG Yu-Ying1, WANG Hai-Ping1, GE Fang-Fang1, TANG Yong-Jian1, JU Xin2
1Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900
2Department of Physics, University of Science and Technology Beijing, Beijing 100083
Cite this article:   
WANG Xue-Min, WU Wei-Dong, WANG Yu-Ying et al  2011 Chin. Phys. Lett. 28 016102
Download: PDF(1354KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Due to the local densification, high-energy C and doped ions can greatly affect the bonding configurations of diamond-like carbon films. We investigate the corresponding affection of different incident ions with energy from 10 eV to 600 eV by Monte Carlo methods. The ion-implanted mechanism called the subplantation (for C, N, O, W, Y, etc.) is confirmed. Obvious thermal effect could be induced by the subplantation of the incident ions. Further, the subplantation of C ions is proved by in situ reflection high energy electron diffraction (RHEED). The observation from an atomic force microscope (AFM) indicates that the initial implantation of C ions might result in the final primitive-cell-like morphology of the smooth film (in an area of 1.2mm×0.9mm, rms roughness smaller than 20 nm by Wyko).
Keywords: 61.05.Jh      61.43.Er     
Received: 05 November 2010      Published: 23 December 2010
PACS:  61.05.jh (Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))  
  61.43.Er (Other amorphous solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/016102       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/016102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xue-Min
WU Wei-Dong
WANG Yu-Ying
WANG Hai-Ping
GE Fang-Fang
TANG Yong-Jian
JU Xin
[1] Janmohamed R, Steele J J, C Scurtescu and Tsui Y Y 2007 Appl. Surf. Sci. 253 7964
[2] Kleber R, Weiler M, Kruger A, Sattel S, Kunz G, Jung A and Ehrhardt H 1993 Diamond Rel. Mater. 2 246
[3] Spencer E G, Schmidt P H, Joy D C and Sansalone F J 1976 Appl. Phys. Lett. 29 118
[4] Lifshitz Y, Kasi S R and Rabalais J W 1990 Phys. Rev. B 41 10468
[5] Weissmantel C 1982 Thin Solid Films 92 55
[6] Kaukonen H P and Nieminen R M 2000 Phys. Rev. B 61 2806
[7] Uhlmann S, Frauenheim T and Lifshitz Y 1998 Phys. Rev. Lett. 81 641
[8] Kohary K and Kugler S 2001 Phys. Rev. B 63 193404
[9] Robertson J 1994 Diamond Rel. Mater. 3 361
[10] Steffen H J, Marton S and Rabalais J W 1992 Phys. Rev. Lett. 68 1726
[11] Koike J, Parkin D M and Mitchell T E 1992 Appl. Phys. Lett. 60 1450
[12] Chhowalla M, Robertson J, Chen C W, Silva S R P, Davis C A, Amaratunga G A J and Milne W I 1997 J. Appl. Phys. 81 139
[13] Hirvonen J P, Koskinen J, Kaukonen M, Nieminen R and Scheibe H J 1997 J. Appl. Phys. 81 7248
[14] Robertson J 2002 Mater. Sci. Eng. R 37 129
[15] Shi B, Meng W J, Rehn L E and Baldo P M 2002 Appl. Phys. Lett. 81 352
[16] Wang A Y, Ahn H S, Lee K R and Ahn J P 2005 Appl. Phys. Lett. 86 111902
[17] Yao Z Q, Yang P, Huang N, Sun H and Wang J 2004 Appl. Surf. Sci. 230 172
[18] Tsuyoshi Y, Takashi N and Kunihito N 2000 Diamond Rel. Mater. 9 689
[19] Cao D M, Feng B, Meng W J, Rehn L E, Baldo P M and Khonsari M M 2001 Appl. Phys. Lett. 79 329
[20] Meng W J, Tittsworth R C, Jiang J C, Feng B, Cao D M, Winkler K and Palshin V 2000 J. Appl. Phys. 88 2415
[21] Lee C S, Lee K R, Eun K Y et al 2002 Diamond Rel. Mater. 11 198
[22] Ziegler J F 2004 Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. Atoms 219–200 1027
[23] Brice D K 1975 Ion Implantation Range and Energy Deposition Distributions (New York: Plenum) vol 1 p 5
[24] Ziegler J F 1984 Ion Implantation Science and Technology (Orlando: Academic) p 10
[25] Robertson J 2002 Mater. Sci. Eng. R 37 129
[26] Mansano R D, Ruas R, Mousinho A P, Zambom L S, Pinto T J A, Amoedo L H AND Massi M 2008 Surf. Coat. Technol. 202 2813
[27] Sakamoto Y and Takaya M 2005 Thin Solid Films 475 198
[28] Liu E, Shi X, Tay B K, Cheah L K, Tan H S, Shi J R and Sun Z 1999 J. Appl. Phys. 86 6078
[29] Feng W, Weidong W, Jun L, Cheah L K, Tan H S, Shi J R and Sun Z 2009 Sci. Chin. E 52 850
[30] Voevodin A A, Jones J G, Back T C, Zabinski J S, StrelTnitzki V E and Aksenov I I 2005 Surf. Coat. Technol. 197 116
Related articles from Frontiers Journals
[1] S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, J. J. de Miguel, M. Kerouad. Hysteresis Loops and Phase Diagrams of the Spin-1 Ising Model in a Transverse Crystal Field[J]. Chin. Phys. Lett., 2012, 29(1): 016102
[2] LIN Sheng-Xiong, LIU Xiu-Ru**, SHAO Chun-Guang, SHEN Ru, HONG Shi-Ming . Effect of Iodine Additive on Thermostability of Bulk Amorphous Sulfur Prepared by Rapid Compression[J]. Chin. Phys. Lett., 2011, 28(8): 016102
[3] LIU Xing-Long, QIN Fu-Wen, **, BIAN Ji-Ming, ZHANG Dong, CHEN Wei-Ji, ZHOU Zhi-Feng, ZHI An-Bo, YU Bo, WU Ai-Min, JIANG Xin, . The Preparation and Characteristics of InxGa1−xN (0.06≤x≤0.58) Films Deposited by ECR-PEMOCVD[J]. Chin. Phys. Lett., 2011, 28(10): 016102
[4] LIU Long-Fei, DAI Lan-Hong, BAI Yi-Long. A Modified Free Volume Model for Characterizing of Rate Effect in Bulk Metallic Glasses[J]. Chin. Phys. Lett., 2008, 25(3): 016102
[5] WANG Zhi-Jian, WANG Zhi-Jun, ZHANG Li-Gong, YUAN Jin-Shan, YAN Sheng-Gang, WANG Chun-Yan. Room-Temperature Dual Excitonic Emission from Amorphous ZnO[J]. Chin. Phys. Lett., 2003, 20(5): 016102
Viewed
Full text


Abstract