Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 014704    DOI: 10.1088/0256-307X/28/1/014704
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
An Analysis of Peristaltic Flow of a Micropolar Fluid in a Curved Channel
N. Ali1**, M. Sajid2, T. Javed1, Z. Abbas1
1Department of Mathematics, International Islamic University, Islamabad, Paksitan
2Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan
Cite this article:   
N. Ali, M. Sajid, T. Javed et al  2011 Chin. Phys. Lett. 28 014704
Download: PDF(455KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analyze the two-dimensional peristaltic flow of a micropolar fluid in a curved channel. Long wavelength and low Reynolds number assumptions are used in deriving the governing equations. A shooting method with fourth-order Runge-Kutta algorithm is employed to solve the equations. The influence of dimensionless curvature radius on pumping and trapping phenomena is discussed with the help of graphical results. It is seen that the pressure rise per wavelength in the pumping region increases with an increase in the curvature of the channel. Moreover the symmetry of the trapped bolus destroys in going from straight to curved channel.
Keywords: 47.50.-d      47.15.G-      47.63.-b     
Received: 07 June 2010      Published: 23 December 2010
PACS:  47.50.-d (Non-Newtonian fluid flows)  
  47.15.G-  
  47.63.-b (Biological fluid dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/014704       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/014704
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
N. Ali
M. Sajid
T. Javed
Z. Abbas
[1] Latham T W 1966 MS Thesis (Massachusetts Institute of Technology)
[2] Shapiro A H et al 1969 J. Fluid Mech. 37 799
[3] Fung Y C and Yih C S 1968 Trans. ASME J. Appl. Mech. 33 669
[4] Siddiqui A M and Schwarz W H 1994 J. Non-Newtonian Fluid Mech. 53 257
[5] Hayat T et al 2004 Math. Problems Eng. 2004 347
[6] Hayat T, Ali N and Asghar S 2007 Phys. Lett. A 363 397
[7] Wang Y, Hayat T and Hutter K 2007 Theor. Comput. Fluid Dyn. 21 369
[8] Haroun M H 2007 Commun. Nonlinear Sci. Numer. Simul. 8 1464
[9] Ali N, Wang Y et al 2008 Biorheology 45 611
[10] Srinivas S and Kothandapani M 2008 Int. J. Nonlinear Mech. 43 915
[11] Rao A R and Mishra M 2004 J. Non-Newtonian Fluid Mech. 121 163
[12] Hakeem A E et al 2006 Physica A 367 79
[13] Radhakrishnamacharya G 1982 Rheol. Acta 21 30
[14] Eringen A C 1966 J. Math. Mech. 16 1
[15] Ariman T et al 1974 Int. J. Eng. Sci. 12 273
[16] Lukasazewicz G 1999 Micropolar Fluids: Theory and Applications (Boston: Birkhauser)
[17] Eringen A C 2001 Micro-continuum Field Theories II: Fluent Media (New York: Springer)
[18] Raju K K and Devanathan R 1972 Rheol. Acta 11 170
[19] Devi G and Devanathan R 1975 Proc. Indian. Acad. Sci. 81(A) 149
[20] Srinivasacharya D, Mishra M and Rao A R 2003 Acta Mech. 161 165
[21] Hayat T and Ali N 2008 Math. Comp. Model. 48 721
[22] Sato H, Kawai T, Fujita T and Okabe 2000 Jpn. Soc. Mech. Eng. B 66 679
[23] Ali N, Sajid M and Hayat T 2010 Z. Naturforschung A 65a 191
Related articles from Frontiers Journals
[1] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 014704
[2] SHEN Zai-Yi, HE Ying. A Lattice Boltzmann Method for Simulating the Separation of Red Blood Cells at Microvascular Bifurcations[J]. Chin. Phys. Lett., 2012, 29(2): 014704
[3] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 014704
[4] T. Hayat, Liaqat Ali. Khan, R. Ellahi**, S. Obaidat . Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame[J]. Chin. Phys. Lett., 2011, 28(5): 014704
[5] T. Hayat, **, F. M. Abbasi, Awatif A. Hendi . Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid[J]. Chin. Phys. Lett., 2011, 28(4): 014704
[6] Tasawar Hayat, **, Najma Saleem, Awatif A. Hendi . A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(3): 014704
[7] S. Nadeem, Naeem Faraz. Thin Film Flow of a Second Grade Fluid over a Stretching/Shrinking Sheet with Variable Temperature-Dependent Viscosity[J]. Chin. Phys. Lett., 2010, 27(3): 014704
[8] YANG Fan, ZHU Ke-Qin. Generalized Lorenz Equation Derived from Thermal Convection of Viscoelastic Fluids in a Loop[J]. Chin. Phys. Lett., 2010, 27(3): 014704
[9] M. Sajid, N. Ali, T. Javed, Z. Abbas. Stretching a Curved Surface in a Viscous Fluid[J]. Chin. Phys. Lett., 2010, 27(2): 014704
[10] YANG Fan, ZHU Ke-Qin. Can We Obtain a Fractional Lorenz System from a Physical Problem?[J]. Chin. Phys. Lett., 2010, 27(12): 014704
[11] K. Fakhar, XU Zhen-Li, CHENG Yi. Hall Effects on Unsteady Magnetohydrodynamic Flow of a Third Grade Fluid[J]. Chin. Phys. Lett., 2007, 24(5): 014704
[12] FENG Shun-Xin, FU Song. Influence of Orbital Motion of Inner Cylinder on Eccentric Taylor Vortex Flow of Newtonian and Power-Law Fluids[J]. Chin. Phys. Lett., 2007, 24(3): 014704
Viewed
Full text


Abstract