Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 014208    DOI: 10.1088/0256-307X/28/1/014208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Correlation of Photosensitization and Binding Mode of Methylene Blue and DNA
LIU Tao, ZHANG Feng, CHEN Ping, TANG Guo-Qing, LIN Lie**
Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Institute of Modern Optics, Nankai University, Tianjin 300071
Cite this article:   
LIU Tao, ZHANG Feng, CHEN Ping et al  2011 Chin. Phys. Lett. 28 014208
Download: PDF(676KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Binding of methylene blue (MB) and DNA, photosensitization of MB in DNA, and correlation of photosensitization and binding mode are studied at different concentration ratios of DNA and MB. The absorption spectra indicate that the electrostatic binding is the main mode at low γ ratios (γ≤2), while at high γ ratios (γ>2) the intercalative binding is dominated. Studies on dynamics of photosensitization formation of singlet oxygen (1O2) for MB in DNA are carried out by using time−resolved technology. There are no obvious changes of the singlet oxygen lifetime and the triplet state MB molecule (MB3+∗) lifetime at low ratios, they are about 4 μs and 1 µs, respectively. However, we could not obtain the 1O2 lifetime and MB3+∗ lifetime due to the great decrease of 1O2 phosphorescence signals at high ratios. These results show that the photosensitization and binding mode of MB in DNA possess high correlation. When MB binds with DNA by electrostatic interaction, type−II photosensitization of MB plays a major role in photodynamic effect, the damage of DNA probably could be ascribed to 1O2. However, at high ratios, binding mode between MB and DNA turns to intercalative binding, which greatly weakens the type−II photosensitization process. Charge transfer between MB and DNA possibly becomes the main damage mechanism.
Keywords: 42.62.Be      87.80.Dj      87.64.km     
Received: 01 November 2010      Published: 23 December 2010
PACS:  42.62.Be (Biological and medical applications)  
  87.80.Dj (Spectroscopies)  
  87.64.km (Infrared)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/014208       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/014208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Tao
ZHANG Feng
CHEN Ping
TANG Guo-Qing
LIN Lie
[1] Qin Y, Pang J Y, Chen W H, Cai Z W and Jiang Z H 2006 Bioorgan. Med. Chem. 14 25
[2] Bhadra K, Maiti M and Kumar G S 2007 Biochimica et Biophysica Acta (BBA): General Subjects 1770 1071
[3] Dan F, Ming W X, Bo L H, Sheng D L, Min H Y, Huan Z and Lin Z S 2008 Acta Chim. Sin. 66 443 (in Chinese)
[4] Zhang L Z and Tang G Q 2004 J. Photoch. Photobiol. B: Biol. 74 119
[5] Tong C, Hu Z and Wu J 2010 J. Fluoresc. 20 261
[6] Rye H S, Dabora J M, Quesada M A, Mathies R A and Glazer A N 1993 Anal. Biochem. 208 144
[7] Rohs R, Sklenar H, Lavery R and Roder B 2000 J. Am. Chem. Soc. 122 2860
[8] Zhao G C, Zhu J J, Zhang J J and Chen H Y 1999 Anal. Chim. Acta 394 337
[9] Zhao G C, Zhu J J and Chen H Y 1999 Spectrochim. Acta A: Mol. Biomol. Spectrosc. 55 1109
[10] Hu Z and Tong C 2007 Anal. Chim. Acta 587 187
[11] Wang Y and Zhou A 2007 J. Photoch. Photobiol. A: Chem. 190 121
[12] Tardivo J P, Del Giglio A, Paschoal L H C, Ito A S and Baptista M S 2004 Photodiagnosis. Photodyn. Ther. 1 345
[13] Gabrielli D, Belisle E, Severino D, Kowaltowski A J and Baptista M S 2004 Photochem. Photobiol. 79 227
[14] Chen Y, Zheng W, Li Y, Zhong J, Ji J and Shen P 2008 Cancer Science 99 2019
[15] Tardivo J P, Del Giglio A, de Oliveira C S, Gabrielli D S, Junqueira H C, Tada D B, Severino D, de Fátima Turchiello R and Baptista M S 2005 Photodiagnosis. Photodyn. Ther. 2 175
[16] Wilkinson F, Helman W P and Ross A B 1995 J. Phys. Chem. Ref. Data 24 663
[17] Long E C and Barton J K 1990 Accounts Chem. Res. 23 271
[18] Krasnovsky Jr A A 2008 J. Photoch. Photobiol. A: Chem. 196 210
[19] Schweitzer C and Schmidt R 2003 Chem. Rev. 103 1685
[20] Skovsen E, Snyder J W, Lambert J D C and Ogilby P R 2005 J. Phys. Chem. B 109 8570
[21] Boon E M, Jackson N M, Wightman M D, Kelley S O, Hill M G and Barton J K 2003 J. Phys. Chem. B 107 11805
[22] Genereux J C and Barton J K 2009 Chem. Rev. 110 1642
[23] Holmlin R E, Dandliker P J and Barton J K 1997 Angew. Chem. Int. Ed. Engl. 36 2714
Related articles from Frontiers Journals
[1] WANG Chen**, QIAO Ling-Ling, MAO Zheng-Le . Simulation of Far-Field Superresolution Fluorescence Imaging with Two-Color One-Photon Excitation of Reversible Photoactivatable Protein[J]. Chin. Phys. Lett., 2011, 28(5): 014208
[2] ZHANG Yi-Zhuo, WANG Da-Yong, **, WANG Yun-Xin, TAO Shi-Quan . Automatic Compensation of Total Phase Aberrations in Digital Holographic Biological Imaging[J]. Chin. Phys. Lett., 2011, 28(11): 014208
[3] YANG Si-Hua, YIN Guang-Zhi, XING Da. Pharmacokinetic Monitoring of Indocyanine Green for Tumor Detection Using Photoacoustic Imaging[J]. Chin. Phys. Lett., 2010, 27(9): 014208
[4] GAO Jing, YU Xin, CHEN Fei, LI Xu-Dong, ZHANG Zhen, YU Jun-Hua, WANG Yue-Zhu. High Power Continuous-Wave and Acousto-Optic Q-Switched Nd:GdVO4 Laser Operated at 912nm[J]. Chin. Phys. Lett., 2008, 25(1): 014208
[5] WANG Guang-Li, HUANG Shi-Yong, ZHANG Ying-Ying, LIANG Pei-Ji. Contrast Adaptation Decreases Complexity in Retinal Ganglion Cell Spike Train[J]. Chin. Phys. Lett., 2007, 24(1): 014208
[6] MA Zhen-He, Ruikang K. WANG, ZHANG Fan, YAO Jian-Quan. Arbitrary Three-Phase Shifting Algorithm for Achieving Full Range Spectral Optical Coherence Tomography[J]. Chin. Phys. Lett., 2006, 23(2): 014208
[7] JIN Xin, LIANG Pei-Ji. Adaptive Regulation for Noise-Aided Weak Signal Detection in Spiking Neurons[J]. Chin. Phys. Lett., 2006, 23(2): 014208
[8] MO Hua, YANG Li-Jian, JIA Ya. A Quantitative Analysis of Modulation of the Fast Excitatory Postsynaptic Potential of Neurons in Rat Sympathetic Ganglia by a Low-Intensity Laser[J]. Chin. Phys. Lett., 2005, 22(9): 014208
[9] MA Zhen-He, Ruikang K. Wang, ZHANG Fan, YAO Jian-Quan. Spectral Optical Coherence Tomography Using Two-Phase Shifting Method[J]. Chin. Phys. Lett., 2005, 22(8): 014208
[10] LAI Jian-Cheng, LI Zhen-Hua, HE An-Zhi. Influence of Complex Refractive Index on Diffuse Reflection of Biological Tissues[J]. Chin. Phys. Lett., 2005, 22(2): 014208
[11] SUN Jin-Hai, SHEN Jing-Ling, LIANG Lai-Shun, XU Xiao-Yu, LIU Hai-Bo, ZHANG Cun-Lin. Experimental Investigation on Terahertz Spectra of Amphetamine Type Stimulants[J]. Chin. Phys. Lett., 2005, 22(12): 014208
[12] YAN Hai-Tao, WANG Wei-Ning. Experimental and Theoretical Study of Carnosine in THz Range[J]. Chin. Phys. Lett., 2005, 22(12): 014208
[13] LAI Jian-Cheng, LI Zhen-Hua, HE An-Zhi. An Improved Computing Method for Analysing the Spatial Resolved Reflectance from Biological Tissues[J]. Chin. Phys. Lett., 2003, 20(12): 014208
[14] WU Ji-Gang, XUE Ping, SUN Shan, GUO Ji-Hua. Spectral Shaping in Rapid Scanning Optical Delay Line of Optical Coherence Tomography[J]. Chin. Phys. Lett., 2003, 20(12): 014208
[15] SUN Shan, GUO Ji-Hua, GAO Jian-Song, XUE Ping. Enhancement of Optical Coherence Tomography Axial Resolution by Spectral Shaping[J]. Chin. Phys. Lett., 2002, 19(10): 014208
Viewed
Full text


Abstract