FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Relaxation Time for an Optical Bistable System Subjected to Color Noises |
WANG Bing**, WU Xiu-Qing, CHENG Dong-Chao
|
Department of Physics and Mathematics, Anhui University of Science and Technology, Huainan 232001
|
|
Cite this article: |
WANG Bing, WU Xiu-Qing, CHENG Dong-Chao 2011 Chin. Phys. Lett. 28 014202 |
|
|
Abstract The relaxation time T of an optical bistable system with cross–correlated color noises and small time delay is investigated. Using the Novikov theorem and Fox approach, the steady probability distribution is obtained. The expression of T is derived using the Stratonovich decoupling ansatz formalism. It is found that the relaxation time T increases with the increasing cross–correlation time τ0 between the two noises or the self–correlation time τ1 of the multiplicative noise, but decreases with the increasing self–correlation time τ2 of the additive noise. T decreases with the increasing correlation intensity λ or the multiplicative noise intensity Q, but increases with the increasing additive noise intensity D. There exists a peak in the curve of T versus delay time τ.
|
Keywords:
42.65.Pc
42.65.Sf
|
|
Received: 15 April 2010
Published: 23 December 2010
|
|
PACS: |
42.65.Pc
|
(Optical bistability, multistability, and switching, including local field effects)
|
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
|
|
|
[1] Madureira A J R, Hanggi P and Wio H S 1996 Phys. Lett. A 217 248
[2] Dykman M I, Mannella R, Mc Clintock P V E and Stocks N G 1990 Phys. Rev. Lett. 65 2606
[3] Fulinski A and Telejko T 1991 Phys. Lett. A 152 11
[4] Jia Y and Li J R 1996 Phys. Rev. E 53 5786
[5] Jia Y and Li J R 1996 Phys. Rev. E 53 5764
[6] Li J H and Huang Z Q 1998 Phys. Rev. E 58 2760
[7] Li J H, Huang Z Q and Xing D Y 1998 Phys. Rev. E 58 2838
[8] Zhang L, Cao L and Wu D J 2003 Chin. Phys. 12 33
[9] Wang J, Cao L and Wu D J 2004 Chin. Phys. Lett. 21 246
[10] Zhu S 1992 Phys. Rev. A 45 3210
[11] Mei D C, Xie G Z, Cao L and Wu D J 1999 Chin. Phys. Lett. 16 327
[12] Mei D C, Xie C W, Xiang Y L 2004 Physica A 343 167
[13] Cao L and Wu D J 1994 Phys. Lett. A 185 59
[14] Wang J and Zhu S 1995 Phys. Lett. A 207 47
[15] Wu D, Luo X Q and Zhu S Q 2007 Physica A 373 203
[16] Xie C W and Mei D C 2003 Chin. Phys. Lett. 20 1681
[17] Li J H 2007 Chin. Phys. Lett. 24 2505
[18] Wang B, Dai S and Ge S 2006 Chin. Opt. Lett. 4 397
[19] Wang B and Wu X 2007 Chin. Opt. Lett. 5 288
[20] Mei D C, Xie C W and Zhang L 2003 Phys. Rev. E 68 051102
[21] Cheng Q, Cao L, Xu D and Wu D 2004 Chin. Opt. Lett. 2 331
[22] Denisov S I, Vitrenko A N and Horsthemke W 2003 Phys. Rev. E 68 046132
[23] Bartussek R, Hanggi P and Jung P 1994 Phys. Rev. E 49 3930
[24] Ning L J and Xu W 2006 Chin. Phys. Lett. 23 3180
[25] Zhang L, Cao L and Wu D J 2008 Phys. Rev. A 77 015801
[26] Park S H, Kim S, Pyo H B and Lee S 1999 Phys. Rev. E 60 4962
[27] Kim S, Park S H and Pyo H B 1999 Phys. Rev. Lett. 82 1620
[28] Gu X H, Zhu S Q and Wu D 2007 Commun. Theor. Phys 48 1055
[29] Wu D and Zhu S 2007 Phys. Lett. A 363 202
[30] Bonifacio R and Lugiato L A 1978 Phys. Rev. A 18 1129
[31] Bowden C M, Ciftan M and Robi H R 1981 Optical Bistability (New York: Plenum)
[32] Novikov E A 1964 Zh. Eksp. Teor. Fiz. 47 1919
[33] Fox R F 1986 Phys. Rev. A 34 4525
[34] Frank T D 2005 Phys. Rev. E 72 011112
[35] Liang G Y, Cao L and Wu D J 2002 Phys. Lett. A 294 190
[36] Hernandez-Machado A, San Miguel M and Sancho J M 1984 Phys. Rev. A 29 3388
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|