Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 010504    DOI: 10.1088/0256-307X/28/1/010504
GENERAL |
Synchronization of Coupled Neurons Controlled by a Pacemaker
LI Mei-Sheng1**, ZHANG Hong-Hui1, ZHAO Yong2, SHI Xia3
1LMIB and School of Mathematics and System Sciences, Beihang University, Beijing 100191
2Department of Dynamics and Control, Beihang University, Beijing 100191
3School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
LI Mei-Sheng, ZHANG Hong-Hui, ZHAO Yong et al  2011 Chin. Phys. Lett. 28 010504
Download: PDF(704KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate synchronization of Hindmarsh–Rose neurons with gap junctions under the control of a pacemaker. In a ring Hindmarsh–Rose neuronal network, the coupled neurons with the pacemaker can occur in synchronization more easily than those without the pacemaker. Furthermore, the pacemaker can induce phase synchronization or nearly-complete synchronization of nonidentical neurons. This synchronization can occur more easily when time delay is considered. Theses results can be helpful to understand the activities of the real neuronal system.
Keywords: 05.45.-a      05.45.Xt     
Received: 29 April 2010      Published: 23 December 2010
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/010504       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/010504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Mei-Sheng
ZHANG Hong-Hui
ZHAO Yong
SHI Xia
[1] Shi X and LU Q S 2004 Chin. Phys. Lett. 21 1695
[2] Masuda N and Aihara K 2004 Biol. Cybern 90 302
[3] PecoraL M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[4] Wang Q Y and Lu Q S 2005 Chin. Phys. Lett. 22 1329
[5] Wang H X 2006 J. Beihang University 32(3) 320 (in Chinese)
[6] Wang H X, Lu Q S and Wang Q Y 2005 Chin. Phys. Lett. 22 2173
[7] Wang Q Y, Lu Q S and Chen G R 2008 Phys. Lett. A 38(7) 4404
[8] Zheng Y H and Lu Q S 2008 J. Dyn. Control 6(3) 208 (in Chinese)
[9] Dhamala M, Jirsa V K and Ding M Z 2004 Phys. Rev. Lett. 92 074104
[10] Zhou C and Kurths J 2002 Phys. Rev. Lett. 88 230602
[11] He D, Shi P and Stone L 2003 Phys. Rev. Lett. 67 027201
[12] Li M S, Lu Q S, Duan L X and Wang Q Y 2008 Phys. Rev. Lett. 25 2806
[13] Hindmarsh J L et al 1994 Proc. R. Soc. London B 221 87
[14] Yanchuk S et al 2000 Int. J. Bifur. Chaos 10 1051
[15] LI J H 2008 Chin. Phys. Lett. 25 413
[16] Rosenblum M G and Pikovsky A S 1997 Phys. Rev. Lett. 78 4196
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 010504
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 010504
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 010504
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 010504
[12] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 010504
[13] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 010504
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 010504
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 010504
Viewed
Full text


Abstract