Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 010503    DOI: 10.1088/0256-307X/28/1/010503
GENERAL |
Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems
DU Mao-Kang**, HE Bo, WANG Yong
Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065
Cite this article:   
DU Mao-Kang, HE Bo, WANG Yong 2011 Chin. Phys. Lett. 28 010503
Download: PDF(457KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14 (2009) 574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks and to keep all the merits of the original cryptosystem.
Keywords: 05.45.Gg     
Received: 14 April 2010      Published: 23 December 2010
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/010503       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/010503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DU Mao-Kang
HE Bo
WANG Yong
[1] Wang X Y and Yu Q 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 574
[2] Jakimoski G et al 2001 IEEE Trans. Circuit Syst. I 48 163
[3] Wang X and Yu C 2009 Comput. Math. Appl. 57 277
[4] Habutsu T and Nishio Y 1991 Advances in Cryptology-EuroCrypt_91 (Berlin 10–12 September 1991) p 127
[5] Li P, Li Z et al 2006 Phys. Lett. A 349 467
[6] Liu H and Wang X 2010 Comput. Math. Appl. 59 33
[7] Wang X and Gao Y 2010 Commun. Nonlin. Sci. Numer. Simulat. 15 99
[8] Wang X, Chen F and Wang T 2010 Commun. Nonlin. Sci. Numer. Simulat. 15 2479
[9] Wang Y, Liao X et al 2008 Information Sci. 178 1391
[10] Shannon C E 1949 Bell. Syst. Tech. J. 28 656
[11] Stinson D R 1995 Cryptography: Theory and Practice (FL: CRC)
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 010503
[3] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 010503
[4] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 010503
[5] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 010503
[6] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 010503
[7] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 010503
[8] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 010503
[9] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 010503
[10] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 010503
[11] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 010503
[12] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 010503
[13] XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 010503
[14] LU Xiao-Qing, Francis Austin, CHEN Shi-Hua. Cluster Consensus of Nonlinearly Coupled Multi-Agent Systems in Directed Graphs[J]. Chin. Phys. Lett., 2010, 27(5): 010503
[15] LI Fei, PAN Chang-Ning, ZHANG Dong-Xia, TANG Li-Qiang. Chaotic Dynamics of a Josephson Junction with Nonlinear Damping[J]. Chin. Phys. Lett., 2010, 27(5): 010503
Viewed
Full text


Abstract