Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 010304    DOI: 10.1088/0256-307X/28/1/010304
GENERAL |
Generating Entangled States of Multilevel Atoms through a Selective Atom-Field Interaction
CHEN Zhi-Hua**, LIN Xiu-Min
School of Physics and Opto-electronics Technology, Fujian Normal University, Fuzhou 350007
Cite this article:   
CHEN Zhi-Hua, LIN Xiu-Min 2011 Chin. Phys. Lett. 28 010304
Download: PDF(343KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a scheme to generate entangled state of two multilevel atoms in a high-Q optical cavity. In the protocol, the selective atom-field interaction is highly controlled, which can yield a resonant interaction inside one selected atom-field subspace and leave the others in a highly dispersive regime. The atomic spontaneous emission is efficiently suppressed via the large atom-field detuning. Simultaneously, the proposal only requires commonly addressing on atoms inside the cavity, which reduces the difficulties of experiment.
Keywords: 03.67.-a      03.67.Lx      42.50.-p      42.50.Pq     
Received: 06 September 2010      Published: 23 December 2010
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/010304       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/010304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Zhi-Hua
LIN Xiu-Min
[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Lin X M, Zhou Z W, Xue P, Gu Y J and Guo G C 2003 Phys. Lett. A 313 351
[3] Shimizu K, Tamaki K and Fukasaka H 2009 Phys. Rev. A 80 022323
[4] Durt T, Cerf N J, Gisin N and Zukowski M 2003 Phys. Rev. A 67 012311
[5] Zheng S B 2003 Phys. Rev. A 68 035801
[6] Lin G W, Ye M Y, Chen L B, Du Q H and Lin X M 2007 Phys. Rev. A 76 014308
[7] Lin G W, Lin X M, Chen L B, Du Q H and Chen Z H 2008 Chin. Phys. B 17 64
[8] Ye S Y, Zhong Z R and Zheng S B 2008 Phys. Rev. A 77 014303
[9] Sergey A M, Sergey N A, and Firdus F G 2010 Phys. Rev. A 82 022311
[10] Lalumière K, Gambetta J M and Blais A 2010 Phys. Rev. A 81 040301
[11] Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefier C and Weinfuter H 2006 Phys. Rev. Lett. 96 030404
[12] Rosenfeld W, Berner S, Volz J, Weber M and Weinfuter H 2007 Phys. Rev. Lett. 98 050504
[13] Mckeever J, Buck J R, Boozer A D, Kuzmich A, Nagerl H C, Stamper-Kurn D M and Kimble H J 2003 Phys. Rev. Lett. 90 133602
[14] Ranschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 2000 Science 288 2024
[15] Xiao Y F, Zou X B and Guo G C 2007 Phys. Rev. A 75 012310
[16] Zou X B, Xiao Y F and Guo G C 2007 Phys. Rev. A 75 064301
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 010304
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 010304
[3] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 010304
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 010304
[5] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 010304
[6] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 010304
[7] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 010304
[8] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 010304
[9] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 010304
[10] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 010304
[11] LIU Yang, WU Jing-Hui, SHI Bao-Sen, GUO Guang-Can. Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth[J]. Chin. Phys. Lett., 2012, 29(2): 010304
[12] HU Xin, LIU Gang-Qin, XU Zhang-Cheng, PAN Xin-Yu. Influence of Microwave Detuning on Ramsey Fringes of a Single Nitrogen Vacancy Center Spin in Diamond[J]. Chin. Phys. Lett., 2012, 29(2): 010304
[13] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 010304
[14] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 010304
[15] HOU Shi-Yao, CUI Jing-Xin, LI Jun-Lin** . Experimental Realization of Braunstein's Weight-Decision Algorithm[J]. Chin. Phys. Lett., 2011, 28(9): 010304
Viewed
Full text


Abstract