Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 010203    DOI: 10.1088/0256-307X/28/1/010203
GENERAL |
Numerical Study of a Three-Dimensional Hénon Map
Gabriela A. Casas**, Paulo C. Rech***
Departamento de Física, Universidade do Estado de Santa Catarina, 89223-100 Joinville, Brazil
Cite this article:   
Gabriela A. Casas, Paulo C. Rech 2011 Chin. Phys. Lett. 28 010203
Download: PDF(1084KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider a three-dimensional generalization of the two-dimensional Hénon map. We first investigate the emergence of quasiperiodic states, as a result of Naimark–Sacker bifurcations of period-1 and period-2 orbits. Secondly we investigate the disappearance of the resonance torus in the transition from quasiperiodicity to chaos.
Keywords: 02.30.Rz      05.45.Pq      05.45.Ac     
Received: 19 September 2010      Published: 23 December 2010
PACS:  02.30.Rz (Integral equations)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Ac (Low-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/010203       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/010203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gabriela A. Casas
Paulo C. Rech
[1] Hénon M 1976 Commun. Math. Phys. 50 69
[2] Hitzl D L and Zele F 1985 Physica D 14 305
[3] Li Y, Li B and Chen Y 2009 Int. J. Mod. Phys. C 20 597
[4] Xue Y J and Yang S Y 2003 Chaos Solitons & Fractals 17 717
[5] Yan Z 2005 Phys. Lett. A 342 309
[6] Grassi G and Miller D A 2002 IEEE Trans. Circuits Syst. I 49 373
[7] Yan Z 2005 Phys. Lett. A 343 423
[8] Wen G L and Xu D 2004 Phys. Lett. A 333 420
[9] Guckenheimer J and Holmes P 2002 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (New York: Springer) p 157
[10] Wiggins S 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer) p 498
[11] Afraimovich V S and Shilnikov L P 1991 Am. Math. Soc. Transl. 149 201
[12] Gallas J A C 1993 Phys. Rev. Lett. 70 2714
[13] Schuster H G 2005 Deterministic Chaos: An Introduction (Weinheim: VCH) p 138
[14] Ogata K 1995 Discrete-Time Control Systems (Englewood Cliffs: Prentice Hall) p 185
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 010203
[2] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 010203
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 010203
[4] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 010203
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 010203
[6] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 010203
[7] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 010203
[8] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 010203
[9] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 010203
[10] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 010203
[11] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 010203
[12] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 010203
[13] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 010203
[14] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 010203
[15] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 010203
Viewed
Full text


Abstract