GENERAL |
|
|
|
|
Numerical Study of a Three-Dimensional Hénon Map |
Gabriela A. Casas**, Paulo C. Rech***
|
Departamento de Física, Universidade do Estado de Santa Catarina, 89223-100 Joinville, Brazil
|
|
Cite this article: |
Gabriela A. Casas, Paulo C. Rech 2011 Chin. Phys. Lett. 28 010203 |
|
|
Abstract We consider a three-dimensional generalization of the two-dimensional Hénon map. We first investigate the emergence of quasiperiodic states, as a result of Naimark–Sacker bifurcations of period-1 and period-2 orbits. Secondly we investigate the disappearance of the resonance torus in the transition from quasiperiodicity to chaos.
|
Keywords:
02.30.Rz
05.45.Pq
05.45.Ac
|
|
Received: 19 September 2010
Published: 23 December 2010
|
|
PACS: |
02.30.Rz
|
(Integral equations)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
05.45.Ac
|
(Low-dimensional chaos)
|
|
|
|
|
[1] Hénon M 1976 Commun. Math. Phys. 50 69
[2] Hitzl D L and Zele F 1985 Physica D 14 305
[3] Li Y, Li B and Chen Y 2009 Int. J. Mod. Phys. C 20 597
[4] Xue Y J and Yang S Y 2003 Chaos Solitons & Fractals 17 717
[5] Yan Z 2005 Phys. Lett. A 342 309
[6] Grassi G and Miller D A 2002 IEEE Trans. Circuits Syst. I 49 373
[7] Yan Z 2005 Phys. Lett. A 343 423
[8] Wen G L and Xu D 2004 Phys. Lett. A 333 420
[9] Guckenheimer J and Holmes P 2002 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (New York: Springer) p 157
[10] Wiggins S 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer) p 498
[11] Afraimovich V S and Shilnikov L P 1991 Am. Math. Soc. Transl. 149 201
[12] Gallas J A C 1993 Phys. Rev. Lett. 70 2714
[13] Schuster H G 2005 Deterministic Chaos: An Introduction (Weinheim: VCH) p 138
[14] Ogata K 1995 Discrete-Time Control Systems (Englewood Cliffs: Prentice Hall) p 185
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|