Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 010202    DOI: 10.1088/0256-307X/28/1/010202
GENERAL |
Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis
A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf
Department of Physics, University Med Khider, BP145, 07000 Biskra, Algeria
Cite this article:   
A. Zerarka, O. Haif-Khaif, K. Libarir et al  2011 Chin. Phys. Lett. 28 010202
Download: PDF(415KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This research concerns with the development of a linear three-dimensional numerical model in a quantum environment. We use the semi inverse variational method together with B-spline bases to extract the structures of bound states of the Schrödinger equation. The model performances are demonstrated for the Coulomb type problem. From realistic examples, some state configurations are presented to illustrate the effectiveness and the exactitude of the proposed method.
Keywords: 02.60.Cb      02.60.Jh      04.20.Fy      02.70.Ac     
Received: 26 April 2010      Published: 23 December 2010
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Jh (Numerical differentiation and integration)  
  04.20.Fy (Canonical formalism, Lagrangians, and variational principles)  
  02.70.Ac  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/010202       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/010202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. Zerarka
O. Haif-Khaif
K. Libarir
A. Attaf
[1] Iachello F 1993 Nucl. Phys. A 560 23
[2] Selg M 2001 Phys. Rev. E 64 056701
[3] Dong S H 2000 Int. J. Theor. Phys. 39 1119
[4] Bose S K and Gupta N 1998 IL NUOVO CIMENTO B 113 299
[5] Varshni Y P 1990 Phys. Rev. A 41 4682
[6] Sinha A, Roychoudhury R and Varshni Y P 2000 Can. J. Phys. 78 141
[7] Braun M, Sofianos S A, Papageorgiou D G and Lagaris I E 1996 J. Computat. Phys. 126 315
[8] Bose S K 1994 IL NUOVO CIMENTO B 109 1217
[9] Child M S, Dong S H and Wang X G 2000 J. Phys. A: Math. Gen. 33 5653
[10] Exton H 1995 J. Phys. A: Math. Gen. 28 6739
[11] Alomari A K, Noorani M S M and Nazar R 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 1196
[12] Zerarka A, Saidi H, Hassouni S and Bensalah N 2006 Appl. Math. Comput. 182 665
[13] Liu X Q and Yan Z L 2007 Commun. Nonlin. Sci. Numer. Simulat. 12 1355
[14] Zerarka A, Hassouni S, Saidi H and Boumedjane Y 2005 Commun. Nonlin. Sci. Numer. Simulat. 10 737
[15] Zhou X W 2007 Comput. Math. Appl. 54 1000
[16] Zerarka A, Bensalah N and Hans J 2005 Theor. Math. Phys. 142 470
[17] Morrison J C and Bottcher C 1993 J. Phys. B: At. Mol. Opt. Phys. 26 3999
[18] Johnson W R, Blundell S A and Sapirstein J 1988 Phys. Rev. A 37 307
[19] Fang T K and Chang T N 2000 Phys. Rev. A 61 062704
[20] van der Hart H 1997 J. Phys. B 30 453
[21] Prenter P M 1975 Splines and Variational Methods (New York: Wiley-Interscience)
[22] de Boor C A 1978 Practical Guide to Splines (New York: Springer-Verlag)
[23] Bhutani O P and Sharma S 1979 Int. J. Engin. Sci. 17 475
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 010202
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 010202
[3] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 010202
[4] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 010202
[5] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 010202
[6] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 010202
[7] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 010202
[8] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 010202
[9] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 010202
[10] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 010202
[11] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 010202
[12] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 010202
[13] YUE Song, LI Zhi, CHEN Jian-Jun, GONG Qi-Huang. Bending Loss Calculation of a Dielectric-Loaded Surface Plasmon Polariton Waveguide Structure[J]. Chin. Phys. Lett., 2010, 27(2): 010202
[14] WANG Gang, ZHANG De-Liang, LIU Kai-Xin,. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections[J]. Chin. Phys. Lett., 2010, 27(2): 010202
[15] KIM Bong-Hwan**, PARK Seoung-Hwan***, LEE Jung-Hee, MOON Yong-Tae. Effect of In Composition on Two-Dimensional Electron Gas in Wurtzite AlGaN/InGaN Heterostructures[J]. Chin. Phys. Lett., 2010, 27(11): 010202
Viewed
Full text


Abstract