Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 010201    DOI: 10.1088/0256-307X/28/1/010201
GENERAL |
An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems
K. Fakhar1**, A. H. Kara2
1Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
2School of Mathematics and Centre for Differential Equations, Continuum Mechanics and Applications, University of the Witwatersrand, Johannesburg, P Bag 3 Wits 2050, South Africa
Cite this article:   
K. Fakhar, A. H. Kara 2011 Chin. Phys. Lett. 28 010201
Download: PDF(349KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A large class of partial differential equations in the modelling of ocean waves are due to Ostrovsky. We determine the invariance properties (through the Lie point symmetry generators) and construct classes of conservation laws for some of the models. In the latter case, the method involves finding the 'multipliers' associated with the conservation laws with a stronger emphasis on the 'higher-order' ones. The relationship between the symmetries and conservation laws is investigated by considering the invariance properties of the multipliers.
Keywords: 02.30.Jr      02.20.Sv      02.40.Hw     
Received: 08 June 2010      Published: 23 December 2010
PACS:  02.30.Jr (Partial differential equations)  
  02.20.Sv (Lie algebras of Lie groups)  
  02.40.Hw (Classical differential geometry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/010201       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/010201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
K. Fakhar
A. H. Kara
[1] Gao A and Tian L 2009 Nonlinear Analysis: Real World Applications 10 2894

[2] Gillman O A, Grimshaw R and Stepanyants Y 1995 Studies in Applied Mathematics 95 115

[3] Göktas U and Hereman W 1998 Physica D 123 425

[4] Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics (Dordrecht: Reidel)

[5] Kangalgil F and Ayaz F 2008 Phys. Lett. A 372(11) 1831

[6] Kara A H and Mahomed F M 2000 Int. J. Theor. Phys. 39 23

[7] Kara A H and Mahomed F M 2002 J. Nonlinear Math. Phys. 9 60

[8] Kara A H and Mahomed F M 2006 Nonlinear Dynamics 45 367

[9] Koröglu C and Özis T 2009 Computers and Mathematics with Applications 58 2142

[10] Olver P 1993 Application of Lie Groups to Differential Equations (New York: Springer)

[11] Ostrovsky L 1978 Oceanology 18 119

[12] Ostrovsky L 2003 Phys. Fluids 15 2934
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 010201
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 010201
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 010201
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 010201
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 010201
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 010201
[7] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 010201
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 010201
[9] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 010201
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 010201
[11] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 010201
[12] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 010201
[13] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 010201
[14] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 010201
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 010201
Viewed
Full text


Abstract