Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 098901    DOI: 10.1088/0256-307X/27/9/098901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Phase Transition of the Pair Contact Process Model in a Fragmented Network

HUA Da-Yin, WANG Lie-Yan

Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
HUA Da-Yin, WANG Lie-Yan 2010 Chin. Phys. Lett. 27 098901
Download: PDF(614KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the phase transition of the pair contact process (PCP) model in a fragmented network. The network is formed by rewiring the link between two nearest neighbors to another randomly selected site in one dimension with a probability q. When the average degree <k>=2, the system exhibits a structure transition and the lattice is fragmented into several isolated subgraphs, it is shown that a giant cluster appears and its node fraction does not change nearly for q>0. Furthermore, it is found that the critical behavior of the continuous phase transition for the PCP model is different from the directed percolation (DP) class and the estimated values of the critical exponents are independent of the rewiring probability for q>0. We conjecture that the structure transition for <k> =2 takes an important role in the change of the critical behavior of the continuous phase transition.

Keywords: 89.75.Hc      05.70.Ln      64.60.Ht      82.65.Jv     
Received: 04 February 2010      Published: 25 August 2010
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  64.60.Ht (Dynamic critical phenomena)  
  82.65.Jv  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/098901       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/098901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUA Da-Yin
WANG Lie-Yan
[1] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[2] Dorogovtsev S N and Mendes J F F 2003 Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford: Oxford University)
[3] Dorogovtsev S N and Mendes J F F 2002 Adv. Phys. 51 1079
[4] Kuperman M and Abramson G 2001 Phys. Rev. Lett. 86 2909
[5] Jeong D, Hong H, Kim B J and Choi M Y 2003 Phys. Rev. E 68 027101
[6] Medvedyeva K, Holme P, Minnhagen P and Kim B J 2003 Phys. Rev. E 67 036118
[7] Dorogovtsev S N, Goltsev A V and Mendes J F F 2002 Phys. Rev. E 66 016104
Dorogovtsev S N, Goltsev A V and Mendes J F F 2004 Eur. Phys. J. B 38 177
[8] Iglói F and Turban L 2002 Phys. Rev. E 66 036140
[9] Kim B J, Hong H, Holme P, Jeon G S, Minnhagen P and Choi M Y 2001 Phys. Rev. E 64 056135
[10] Herrero C P 2002 Phys. Rev. E 65 066110
Herrero C P 2004 Phys. Rev. E 69 067109
[11] Callaway D S, Newman M E J, Strogatz S H and Watts D J 2000 Phys. Rev. Lett. 85 5468
[12] Moore C and Newman M E J 2000 Phys. Rev. E 62 7059
[13] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
Pastor-Satorras R and Vespignani A 2001 Phys. Rev. E 63 066117
[14] Karsai M, Juhasz R and Iglói F 2006 Phys. Rev. E 73 036116
[15] Hastings M B 2003 Phys. Rev. Lett. 91 098701
[16] Castellano C and Pastor-Satorras R 2006 Phys. Rev. Lett. 96 038701
Castellano C and Pastor-Satorras R 2007 Phys. Rev. Lett. 98 029802
Ha M, Hong H and Park H 2007 Phys. Rev. Lett. 98 029801
[17] Vazquez F, Eguiluz V M and Miguel M S 2008 Phys. Rev. Lett. 100 108702
[18] Hong H, Ha M and Park H 2007 Phys. Rev. Lett. 98 258701
[19] Jensen I 1993 Phys. Rev. Lett. 70 1465
[20] Carlon E, Henkel M and Schollwock U 2001 Phys. Rev. E 63 036101
[21] Ódor G 200 Phys. Rev. E 62 R3027
Ódor G 2001 Phys. Rev. E 63 067104
Ódor G 2002 Phys. Rev. E 65 026121
[22] Howard M J and Tauber U C 1997 J. Phys. A 30 7721
[23] Hinrichsen H 2001 Phys. Rev. E 63 036102
[24] Park K, Hinrichsen H and Kim I M 2001 Phys. Rev. E 63 065103(R)
[25] Ódor G, Marques M C and Santos M A 2002 arXiv: cond-mat/0201208
[26] Dickman R and de Menezes M A F 2002 Phys. Rev. E 66 045101(R)
[27] Noh J D and Park H 2004 Phys. Rev. E 69 016122
[28] Ódor G 2003 Phys. Rev. E 67 016111
[29] Hua D Y 2004 Phys. Rev. E 70 066101
[30] Hua D Y, Wang L Y and Chen T 2006 J. Phys. A: Math. Gen. 39 9671
[31] Henkel M and Hinrichsen H 2004 J. Phys. A 37 R117-R159
[32] Dickman R 1989 Phys. Rev. B 40 7005
[33] Szolnoki A 2002 Phys. Rev. E 66 057102
[34] Marques M C, Santos M A, and Mendes J F F 2001 Phys. Rev. E 65 016111
[35] Lübeck S and Willmann R D 2002 J. Phys. A: Math. Gen. 35 10205
[36] Watts D J, and Strogatz S H 1998 Nature (London) 393 440
[37] Gade P M and Sinha S 2005 Phys. Rev. E 72 052903
[38] Wijland F V 2002 Phys. Rev. Lett. 89 190602
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 098901
[2] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 098901
[3] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 098901
[4] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 098901
[5] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 098901
[6] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 098901
[7] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 098901
[8] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 098901
[9] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 098901
[10] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 098901
[11] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 098901
[12] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 098901
[13] CAO Xian-Bin, DU Wen-Bo, **, CHEN Cai-Long, ZHANG Jun . Effect of Adaptive Delivery Capacity on Networked Traffic Dynamics[J]. Chin. Phys. Lett., 2011, 28(5): 098901
[14] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Attack Robustness of Scale-Free Networks Based on Grey Information[J]. Chin. Phys. Lett., 2011, 28(5): 098901
[15] K. Iqbal, A. Basit** . A Monte Carlo Simulation of a Monomer Dimer CO-O2 Catalytic Reaction on the Surface and Subsurface of a Face-centered Cubic Lattice[J]. Chin. Phys. Lett., 2011, 28(4): 098901
Viewed
Full text


Abstract