CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Wetting Layer Effect on Optical Gain of Strained CdTe/ZnTe Pyramidal Quantum Dots |
Seoung-Hwan Park, Woo-Pyo Hong |
Department of Electronics Engineering, Catholic University of Daegu, Hayang, Kyeongbuk 712-702, Korea |
|
Cite this article: |
Seoung-Hwan Park, Woo-Pyo Hong 2010 Chin. Phys. Lett. 27 098502 |
|
|
Abstract The optical properties of strained CdTe/ZnTe pyramidal quantum dots (QDs) are investigated as a function of the wetting layer thickness using an eight-band strain-dependent k.p Hamiltonian. The ground-state subband energies in the conduction and valence bands rapidly decreases with the increasing wetting layer thickness. This is attributed to the reduction of subband energies in both the conduction and the valence bands due to the strain effect. The optical gain peak on the shorter wavelength side decreases with the increasing wetting layer thickness. On the other hand, the gain peak on the longer wavelength side is nearly independent of the wetting layer thickness. The decrease in the gain peak on the shorter wavelength side is related to the decrease in matrix elements corresponding to transitions between higher subbands such as (3,4) and (4,3).
|
Keywords:
85.60.Bt
85.30.De
85.30.Vw
78.20.Bh
|
|
Received: 21 June 2010
Published: 25 August 2010
|
|
PACS: |
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Vw
|
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
|
|
|
[1] Asada M et al 1986 IEEE J. Quantum Electron. 22 1915 [2] Bimberg D, Grundmann M and Ledentsov N N 1999 Quantum Dot Heterostructure (New York: Wiley) [3] Yang C S et al 2007 Nanotechnology 18 385602 [4] Schwarzl T et al 2008 Phys. Rev. B 78 165320 [5] Lee S et al 2004 Phys. Rev. B 70 125307 [6] Melnik R V N and Willatzen M 2004 Nanotechnology 15 1 [7] Hong W P et al 2009 J. Korean Phys. Soc. 55 1607 [8] Hong W P et al 2009 J. Korean Phys. Soc. 55 2496 [9] Park S -H et al 2004 J. Appl. Phys. 96 2055 [10] Kwon Y W and Bang H 2000 The Finite Element Method using Matlab (New York: CRC) [11] For example, see http://www.comsol.com [12] Bahder T B 1990 Phys. Rev. B 41 11992 [13] Van de Walle C G 1989 Phys. Rev. B 39 1871 [14] Woo J T et al 2007 J. Appl. Phys. 102 033521 [15] Li T et al 1992 Phys. Rev. B 46 6961 [16] Paiva R de et al 2002 Brazilian J. Phys. 32 405 [17] Buschert J R et al 1994 Phys. Rev. B 49 4619 [18] Kurilo I V et al 1997 Phys. Status Solidi A 163 47 [19] Huebner K H, Dewhirst D L, Smith D E and Byrom T G 2001 The Finite Element Method for Engineers 4th edn (New York: Wiley) [20] Kuo M K et al 2006 Semicond. Sci. Technol. 21 626 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|