Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 098502    DOI: 10.1088/0256-307X/27/9/098502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Wetting Layer Effect on Optical Gain of Strained CdTe/ZnTe Pyramidal Quantum Dots

Seoung-Hwan Park, Woo-Pyo Hong

Department of Electronics Engineering, Catholic University of Daegu, Hayang, Kyeongbuk 712-702, Korea
Cite this article:   
Seoung-Hwan Park, Woo-Pyo Hong 2010 Chin. Phys. Lett. 27 098502
Download: PDF(710KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The optical properties of strained CdTe/ZnTe pyramidal quantum dots (QDs) are investigated as a function of the wetting layer thickness using an eight-band strain-dependent k.p Hamiltonian. The ground-state subband energies in the conduction and valence bands rapidly decreases with the increasing wetting layer thickness. This is attributed to the reduction of subband energies in both the conduction and the valence bands due to the strain effect. The optical gain peak on the shorter wavelength side decreases with the increasing wetting layer thickness. On the other hand, the gain peak on the longer wavelength side is nearly independent of the wetting layer thickness. The decrease in the gain peak on the shorter wavelength side is related to the decrease in matrix elements corresponding to transitions between higher subbands such as (3,4) and (4,3).

Keywords: 85.60.Bt      85.30.De      85.30.Vw      78.20.Bh     
Received: 21 June 2010      Published: 25 August 2010
PACS:  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Vw  
  78.20.Bh (Theory, models, and numerical simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/098502       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/098502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Seoung-Hwan Park
Woo-Pyo Hong
[1] Asada M et al 1986 IEEE J. Quantum Electron. 22 1915
[2] Bimberg D, Grundmann M and Ledentsov N N 1999 Quantum Dot Heterostructure (New York: Wiley)
[3] Yang C S et al 2007 Nanotechnology 18 385602
[4] Schwarzl T et al 2008 Phys. Rev. B 78 165320
[5] Lee S et al 2004 Phys. Rev. B 70 125307
[6] Melnik R V N and Willatzen M 2004 Nanotechnology 15 1
[7] Hong W P et al 2009 J. Korean Phys. Soc. 55 1607
[8] Hong W P et al 2009 J. Korean Phys. Soc. 55 2496
[9] Park S -H et al 2004 J. Appl. Phys. 96 2055
[10] Kwon Y W and Bang H 2000 The Finite Element Method using Matlab (New York: CRC)
[11] For example, see http://www.comsol.com
[12] Bahder T B 1990 Phys. Rev. B 41 11992
[13] Van de Walle C G 1989 Phys. Rev. B 39 1871
[14] Woo J T et al 2007 J. Appl. Phys. 102 033521
[15] Li T et al 1992 Phys. Rev. B 46 6961
[16] Paiva R de et al 2002 Brazilian J. Phys. 32 405
[17] Buschert J R et al 1994 Phys. Rev. B 49 4619
[18] Kurilo I V et al 1997 Phys. Status Solidi A 163 47
[19] Huebner K H, Dewhirst D L, Smith D E and Byrom T G 2001 The Finite Element Method for Engineers 4th edn (New York: Wiley)
[20] Kuo M K et al 2006 Semicond. Sci. Technol. 21 626
Related articles from Frontiers Journals
[1] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 098502
[2] GUO Wei-Feng,ZHAO Yong,WANG Wan-Jun,SHAO Hai-Feng,YANG Jian-Yi,JIANG Xiao-Qing**. Design and Fabrication of a Monolithic Optoelectronic Integrated Circuit Chip Based on CMOS Compatible Technology[J]. Chin. Phys. Lett., 2012, 29(4): 098502
[3] YAO Jie,YE Yong-Hong**. Super-Resolution Imaging by using a Metallic Rod Array in the Near Infrared Region[J]. Chin. Phys. Lett., 2012, 29(4): 098502
[4] WU Ya-Min, CHEN Guo-Qing, MA Chao-Qun, XUE Si-Zhong, ZHU Zhuo-Wei. Optical Bistability in Graded Core-Shell Granular Composites[J]. Chin. Phys. Lett., 2012, 29(3): 098502
[5] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 098502
[6] FU Xiao-Jian, XU Yuan-Da, ZHOU Ji. Abnormal Dielectric Response in an Optical Range Based on Electronic Transition in Rare-Earth-Ion-Doped Crystals[J]. Chin. Phys. Lett., 2012, 29(2): 098502
[7] ZHANG Jin-Su, ZHONG Hai-Yang, SUN Jia-Shi, CHENG Li-Hong, LI Xiang-Ping, CHEN Bao-Jiu**. Reddish Orange Long-Lasting Phosphorescence in KY3F10:Sm3+ for X-Ray or Cathode Ray Tubes[J]. Chin. Phys. Lett., 2012, 29(1): 098502
[8] FENG Wei**. Terahertz Current Oscillation in Wurtzite InN[J]. Chin. Phys. Lett., 2012, 29(1): 098502
[9] LIU Yan, AO Zhi-Min**, WANG Tao**, WANG Wen-Bo, SHENG Kuang, YU Bin, . Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field[J]. Chin. Phys. Lett., 2011, 28(8): 098502
[10] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 098502
[11] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 098502
[12] Kuang-Po HSUEH**, Shih-Tzung SU, Jun ZENG . Numerical Simulation of 4H-SiC Metal Semiconductor Field Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 098502
[13] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 098502
[14] PAN Feng, QIAN Xian-Rui, HUANG Li-Zhen, WANG Hai-Bo, YAN Dong-Hang** . Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer[J]. Chin. Phys. Lett., 2011, 28(7): 098502
[15] XU Xiao-Bo**, ZHANG He-Ming . An Analytical Avalanche Multiplication Model for Partially Depleted Silicon-on-Insulator SiGe Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 098502
Viewed
Full text


Abstract