CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Preparation of Thermo-Stable Bulk Metallic Glass of Nd60Cu20Ni10Al10 by Rapid Compression |
YUAN Chao-Sheng1, LIU Xiu-Ru1, SHEN Ru1, SUN Zhen-Ya2, CHEN Bo2, LV Shi-Jie1, HE Zhu1, HU Yun1, HONG Shi-Ming1 |
1Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu 610031 2Certer for Materials Research and Testing, Wuhan University of Technology, Wuhan 430070 |
|
Cite this article: |
YUAN Chao-Sheng, LIU Xiu-Ru, SHEN Ru et al 2010 Chin. Phys. Lett. 27 096202 |
|
|
Abstract Melt of Nd60Cu20Ni10Al10 alloy is solidified by rapid compression from 0.1 to 5.5 GPa at 793 K and from 0.1 to 3.2 GPa at 873 K within 20 ms, separately. A fully bulk metallic glass is obtained by the rapid compression method. By comparing with as-cast bulk metallic glass (BMG), it is found that Nd60Cu20Ni10Al10 BMG prepared by rapid compression exhibits a higher thermodynamic stability and a paramagnetic property. The relationship between the glass-formation temperature and the pressure in rapid compression for the BMG is demonstrated in the P-T phase diagram.
|
Keywords:
62.50.-p
81.05.Kf
|
|
Received: 19 May 2010
Published: 25 August 2010
|
|
PACS: |
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
|
|
|
[1] Turnbull D 1981 Metall. Trans. A 12 695 [2] Wang W H 2007 Prog. Mater. Sci. 52 540 [3] Wang W K, Iwasaki H and Fukamichi K 1980 J. Mater. Sci. 15 2701 [4] Yousuf M and Rajan K G 1984 J. Mater. Sci. Lett. 3 149 [5] Shen Z Y, Chen G Y, Zhang Y and Yin X J 1989 Phys. Rev. B 39 2714 [6] Li G, King H E, Oliver W F Jr, Herbst C A and Cummins H Z 1995 Phys. Rev. Lett. 74 2280 [7] He D W, Zhang F X, Zhang M, Liu R P, Qin Z C, Xu Y F and Wang W K 1997 Appl. Phys. Lett. 71 3811 [8] Pan M X, Wang J G, Yao Y S, Zhao D Q and Wang W H 2001 Appl. Phys. Lett. 78 601 [9] Wang W H, Okada T, Wen P, Wang X L, Pan M X, Zhan D Q and Utsumi W 2003 Phys. Rev. B 68 184105 [10] Jiang J Z, Roseker W, Sikorski M, Cao Q P and Xu F 2004 Appl. Phy. Lett. 84 1871 [11] Wang W H, Utsumi W and Wang X L 2005 Europhys. Lett. 71 611 [12] Setyawan A D, Kato H, Saida J and Inoue A 2007 Mater. Sci. Eng. A 449-451 903 [13] Hong S M, Chen L Y and Liu X R 2005 Rev. Sci. Instrum. 76 053905 [14] Hong S M, Liu X R and Su L 2006 J. Phys. D: Appl. Phys. 39 3684 [15] Jia R, Shao C G and Hong S M 2007 J. Phys. D: Appl. Phys. 40 3763 [16] Liu X R, Hong S M, Lv S J and Shen R 2007 Appl. Phys. Lett. 91 081910 [17] Yu P, Wang W H, Wang R J, Lin S X, Liu X R, Hong S M and Bai H Y 2009 Appl. Phys. Lett. 94 011910 [18] Tang M B, Zhao D Q, Pan M X, Wei B C and Wang W H 2004 J. Phys. D: Appl. Phys. 37 973 [19] Cannon J F 1974 J. Phys. Chem. Ref. Data 3 781 [20] Ye F and Lu K 1998 Acta Mater. 46 5965 [21] Wang W H, Bao Z X and Eckert J 2000 Phys. Rev. B 61 3166 [22] Hattori T, Saitoh H, Kaneko H, Okajima Y, Aoki K and Utsumi W 2006 Phys. Rev. Lett. 96 255504 [23] Bhat M H, Molinero V, Soignard E, Solomon V C, Sastry S, Yarger J L and Angell C A 2007 Nature 448 787
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|