Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 095201    DOI: 10.1088/0256-307X/27/9/095201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Effects of Perpendicular Thermal Velocities on the Transverse Instability in Electron Phase Space Holes

WU Ming-Yu1, WU Hong1,2, LU Quan-Ming1, XUE Bing-Sen3

1CAS Key Laboratory of Basic Plasma Physics, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 2Department of Physics, School of Sciences, Jimei University, Xiamen 361021 3Space Weather Operation and Research Division, China Meteorology Administration, Beijing 100081
Cite this article:   
WU Ming-Yu, WU Hong, LU Quan-Ming et al  2010 Chin. Phys. Lett. 27 095201
Download: PDF(754KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A multi-dimensional electron phase-space hole (electron hole) is considered to be unstable to the transverse instability. We perform two-dimensional (2D) particle-in-cell (PIC) simulations to study the evolutions of electron holes in weakly magnetized plasma (Ωepe, where Ωe and ωpe are the electron gyrofrequency and plasma frequency, respectively), and the effects of perpendicular thermal velocities on the transverse instability are investigated. The transverse instability can cause decay of the electron holes. We find that with the increasing perpendicular thermal velocity tending to stabilize the transverse instability, the corresponding wave numbers decrease.

Keywords: 52.35.Sb      52.65.Rr     
Received: 31 May 2010      Published: 25 August 2010
PACS:  52.35.Sb (Solitons; BGK modes)  
  52.65.Rr (Particle-in-cell method)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/095201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/095201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Ming-Yu
WU Hong
LU Quan-Ming
XUE Bing-Sen
[1] Ergun R E et al 1998 Geophys. Res. Lett. 25 2041
[2] Matsumoto H et al 1994 Geophys. Res. Lett. 21 2915
[3] Bale S D et al 1998 Geophys. Res. Lett. 25 2929
[4] Mangeney A et al 1999 Ann. Geophys. 17 307
[5] Cattell C et al 2002 Geophys. Res. Lett. 29 1065
[6] Pickett J S et al 2004 Ann. Geophys. 22 2525
[7] Saeki K et al 1979 Phys. Rev. Lett. 42 501
[8] Sarri G et al 2010 Phys. Plasmas 17 010701
[9] Bernstein I B et al 1957 Phys. Rev. 108 546
[10] Schamel H 1986 Phys. Rep. 140 161
[11] Ng C S and Bhattacharjee A 2005 Phys. Rev. Lett. 95 245004
[12] Omura Y et al 1994 Geophys. Res. Lett. 21 2923
[13] Lu Q M et al 2005 J. Geophys. Res. 110 A03223
[14] Lu Q M et al 2005 Phys. Plasmas 12 072903
[15] Muschietti L et al 2000 Phys. Rev. Lett. 85 94
[16] Lu Q M et al 2008 J. Geophys. Res. 113 A11219
[17] Franz J R et al 1998 Geophys. Res. Lett. 25 1277
[18] Decyk V K 1995 Comput. Phys. Commun. 87 87
[19] Lu Q M and Cai D S 2001 Comput. Phys. Commun. 135 93
[20] Muschietti L et al 1999 Geophys. Res. Lett. 26 1093
[21] Weibel E S 1959 Phys. Rev. Lett. 2 83
[22] Lu Q M et al 2004 Chin. Phys. Lett. 21 129
[23] Lu Q M, Zhou L H and Wang S 2010 J. Geophys. Res. 115 A02213
Related articles from Frontiers Journals
[1] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 095201
[2] Hafeez Ur Rehman. Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 095201
[3] GUO Jun, YU Bin. Competition between Buneman and Langmuir Instabilities[J]. Chin. Phys. Lett., 2012, 29(3): 095201
[4] GE Zhe-Yi, YIN Yan**, CHEN De-Peng, ZHUO Hong-Bin, MA Yan-Yun, SHAO Fu-Qiu. Stimulated Raman Backscattering Amplification Using Multiple Pump Pulses[J]. Chin. Phys. Lett., 2012, 29(1): 095201
[5] XIA Chang-Quan**, DENG Ai-Hua, LIU Li, WANG Wen-Tao, LU Hai-Yang, WANG Cheng, LIU Jian-Sheng . Proton Acceleration with Double-Layer Targets in the Radiation Pressure Dominant Regime[J]. Chin. Phys. Lett., 2011, 28(8): 095201
[6] JI Yan-Ling, DUAN Tao, JIANG Gang, WU Wei-Dong, TANG Yong-Jian** . Effects of Laser Parameters on Fast Electron Generation in a Multihole Array Target[J]. Chin. Phys. Lett., 2011, 28(3): 095201
[7] GUO Jun, **, YU Bin, GUO Guang-Hai, ZHAO Bo . Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection[J]. Chin. Phys. Lett., 2011, 28(2): 095201
[8] XU Yan-Xia, DUAN Wen-Shan** . Korteweg de Vries Description of One-Dimensional Superfluid Fermi Gases[J]. Chin. Phys. Lett., 2011, 28(12): 095201
[9] LIU Cheng-Sen, WANG De-Zhen, FAN Yu-Jia, ZHANG Nan, GUAN Li, YAO Yuan. Non-Uniformity of Ion Implantation in Direct-Current Plasma Immersion Ion Implantation[J]. Chin. Phys. Lett., 2010, 27(7): 095201
[10] JI Yan-Ling, JIANG Gang, WU Wei-Dong, ZHANG Ji-Cheng, TANG Yong-Jian. Enhancement of the Number of Fast Electrons Generated in a Laser Inverse Cone Interaction[J]. Chin. Phys. Lett., 2010, 27(3): 095201
[11] GUO Jun. Particle Simulation of Electrostatic Waves Driven by an Electron Beam[J]. Chin. Phys. Lett., 2010, 27(2): 095201
[12] WU Hai-Cheng, XIE Bai-Song, YU Ming-Young, . Electron Acceleration in the Bubble Regime with Dense-Plasma Wall Driven by an Ultraintense Laser Pulse[J]. Chin. Phys. Lett., 2010, 27(10): 095201
[13] LI Zhi-Qiang, ZHONG Hui-Huang, FAN Yu-Wei, SHU Ting, QIAN Bao-Liang, XU Liu-Rong, ZHAO Yan-Song. Investigation of an S-Band Tapered Magnetically Insulated Transmission Line Oscillator[J]. Chin. Phys. Lett., 2009, 26(5): 095201
[14] JIN Zhang-Ying, SHEN Bai-Fei, ZHANG Xiao-Mei, WANG Feng-Chao, WENMeng, JI Liang-Liang, XU Jian-Cai, WANG Wen-Peng. Proton Acceleration with Nano-Scale Micro-Structured Target by Circularly Polarized Laser Pulse[J]. Chin. Phys. Lett., 2009, 26(12): 095201
[15] WANG Yun-Liang, ZHOU Zhong-Xiang, LU Yan-Zhen, NI Xiao-Dong, SHEN Jiang, ZHANG Yu. Relativistic Magnetosonic Soliton in a Negative-Ion-Rich Magnetized Plasma[J]. Chin. Phys. Lett., 2008, 25(8): 095201
Viewed
Full text


Abstract