Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 094701    DOI: 10.1088/0256-307X/27/9/094701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Simulation of Non-Newtonian Blood Flow by Lattice Boltzman Method

JI Yu-Pin, KANG Xiu-Ying, LIU Da-He

Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
JI Yu-Pin, KANG Xiu-Ying, LIU Da-He 2010 Chin. Phys. Lett. 27 094701
Download: PDF(1082KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Blood flow under various conditions of vessel is simulated as a non-Newtonian fluid by the two-dimensional Lattice Boltzmann method, in which the Casson model is used to express the relationship between viscosity and shear rate of the blood. The flow field distributions at certain sites near the narrowing and bifurcation of the vessel explain the hemodynamic mechanism of the predilection of the atherosclerotic lesions for these sites which are consistent with that found by medical studies.

Keywords: 47.11.+J      47.27.Jv      87.19.U-     
Received: 09 March 2010      Published: 25 August 2010
PACS:  47.11.+J  
  47.27.Jv (High-Reynolds-number turbulence)  
  87.19.U- (Hemodynamics ?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/094701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/094701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JI Yu-Pin
KANG Xiu-Ying
LIU Da-He
[1] Marshall I et al 2004 J. Biomech. 37 679
[2] Lou Z and Yang W 1992 Critical Reviews in Biomedical Engineering 19 455
[3] Botnar R et al 2000 J. Biomech. 33 137
[4] Mijovic B and Liepsch D 2003 Technol. Health Care 11 115
[5] Olufsen M et al 2000 Ann. Biomed. Eng. 28 1281
[6] Qian Y et al 1992 Europhys. Lett. 17 479
[7] Li H et al 2004 Phys. Rev . E 69 031919
[8] Ouared R and Chopard B 2005 J. Stat. Phys. 121 209
[9] Boyd J, Buick J and Green S 2007 Phys. Fluids 19 093103
[10] Kang X et al 2005 Chin. Phys. Lett. 22 1456
[11] Gijsen F, Vosse F and Janssen J 1999 J. Biomech. 32 601
[12] Filippov O and Hänel D 1997 Comput. Fluids 26 697
[13] Mei R, Luo L and Shyy W 1999 J. Comput. Phys. 155 307
[14] Forrester J and Young Y 1970 J. Biomech. 3 297
[15] Rosen R 1967 Optimality Principles in Biology (London: Butterworth)
[16] Boyd J et al 2004 Australas. Phys. Eng. Sci. Med. 27 147
[17] Boyd J et al 2005 Physics in Medicine and Biology 50 4783
Related articles from Frontiers Journals
[1] SHI Lei**,XIONG Wei,GAO Shu-Sheng. The Effect of Gas Leaks on Underground Gas Storage Performance During Development and Operation[J]. Chin. Phys. Lett., 2012, 29(4): 094701
[2] SHEN Zai-Yi, HE Ying. A Lattice Boltzmann Method for Simulating the Separation of Red Blood Cells at Microvascular Bifurcations[J]. Chin. Phys. Lett., 2012, 29(2): 094701
[3] XU Wan-Hai**, DU Jie, YU Jian-Xing, LI Jing-Cheng . Wake Oscillator Model Proposed for the Stream-Wise Vortex-Induced Vibration of a Circular Cylinder in the Second Excitation Region[J]. Chin. Phys. Lett., 2011, 28(12): 094701
[4] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. The Blood Flow at Arterial Bifurcations Simulated by the Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2009, 26(7): 094701
[5] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, LI Hua-Bing. Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow[J]. Chin. Phys. Lett., 2009, 26(4): 094701
[6] DAI Zheng-De, XIAN Da-Quan, LI Dong-Long. Homoclinic Breather-Wave with Convective Effect for the (1+1)-Dimensional Boussinesq Equation[J]. Chin. Phys. Lett., 2009, 26(4): 094701
[7] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, CHEN Yan-Yan. Effect of Rolling Massage on Particle Moving Behaviour in Blood Vessels[J]. Chin. Phys. Lett., 2008, 25(9): 094701
[8] LAI Hui-Lin, MA Chang-Feng,. An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation[J]. Chin. Phys. Lett., 2008, 25(6): 094701
[9] DAI Zheng-De, LIU Zhen-Jiang, LI Dong-Long. Exact Periodic Solitary-Wave Solution for KdV Equation[J]. Chin. Phys. Lett., 2008, 25(5): 094701
[10] RAN Zheng. New Sedov-Type Solution of Isotropic Turbulence[J]. Chin. Phys. Lett., 2008, 25(12): 094701
[11] LI Dong-Long, DAI Zheng-De, GUO Yan-Feng. Periodic Homoclinic Wave of (1+1)-Dimensional Long--Short Wave Equation[J]. Chin. Phys. Lett., 2008, 25(12): 094701
[12] QI Mei-Lan, HE Hong-Liang, YAN Shi-Lin. Effect of Temperature on the Void Growth in Pure Aluminium at High Strain-Rate Loading[J]. Chin. Phys. Lett., 2007, 24(8): 094701
[13] LI Hua-Bing, ZHANG Chao-Ying, LU Xiao-Yang, FANG Hai-Ping. An Effective Method on Two-Dimensional Lattice Boltzmann Simulations with Moving Boundaries[J]. Chin. Phys. Lett., 2007, 24(12): 094701
[14] MA Chang-Feng, , SHI Bao-Chang. Lattice Bhatnagar--Gross--Krook Simulations of Hydromagnetic Double-Diffusive Convection in a Rectangular Enclosure with Opposing Temperature and Concentration Gradients[J]. Chin. Phys. Lett., 2006, 23(7): 094701
[15] CHEN Sheng, LIU Zhao-Hui, HE Zhu, ZHANG Chao, TIAN Zhi-Wei, SHI Bao-Chang, ZHENG Chu-Guang. A Novel Lattice Boltzmann Model For Reactive Flows with Fast Chemistry[J]. Chin. Phys. Lett., 2006, 23(3): 094701
Viewed
Full text


Abstract