Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 094304    DOI: 10.1088/0256-307X/27/9/094304
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts

LUO Wen-Yu1, SCHMIDT Henrik2

1State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 2Department of Mechanical Engineering, Massachusetts Institute of Technology, Massachusetts 02139, U.S.A.
Cite this article:   
LUO Wen-Yu, SCHMIDT Henrik 2010 Chin. Phys. Lett. 27 094304
Download: PDF(454KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A spectral coupled-mode solution of the three-dimensional (3D) acoustic field generated by a point source in the presence of an axisymmetric seamount is developed. Based on the same theoretical foundation as the formulation presented by Taroudakis [J. Comput. Acoust. 4 (1996) 101], the present approach combines a spectral decomposition in azimuth with a coupled-mode theory for two-way range-dependent propagation. However, the earlier formulations are severely limited in terms of frequency, size and geometry of the seamount, the seabed composition, and the distance between the source and the seamount, and are therefore severely limited in regard to realistic seamount problems. Without changing the fundamental theoretical foundation, the present approach applies a number of modifications to the formulation, leading to orders of magnitude improvement in numerical efficiency for realistic problems. Therefore, realistic propagation and scattering scenarios can be modeled, including effects of seamount roughness and realistic sedimentary structure.

Keywords: 43.30.Bp      43.30.Gv     
Received: 12 June 2010      Published: 25 August 2010
PACS:  43.30.Bp (Normal mode propagation of sound in water)  
  43.30.Gv (Backscattering, echoes, and reverberation in water due to combinations of boundaries)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/094304       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/094304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Wen-Yu
SCHMIDT Henrik
[1] Ferla C, Porter M, and Jensen F 1993 C-SNAP: Coupled SACLANTCEN normal mode propagation model (La Spezia: SACLANT Undersea Research Centre).
[2] Porter M B, Jensen F B, and Feria C M 1991 J. Acoust. Soc. Am. 89 1058
[3] Evans R B 1983 J. Acoust. Soc. Am. 74 188
[4] Collins M D and McDonald B E 1995 J. Acoust. Soc. Am. 97 1567
[5] Lee D and Botseas G 1992 J. Acoust. Soc. Am. 91 3192
[6] Harrison C H 1977 J. Acoust. Soc. Am. 62 1382
[7] Perkins J S and Baer R N 1982 J. Acoust. Soc. Am. 72 515
[8] Botseas G, Lee D, and King D 1987 FOR3D: A Computer Model for Solving the LSS Three-Dimensional, Wide Angle Wave Equation (NUSC TR 7943)
[9] Athanassoulis G A and Propathopoulos A M 1996 J. Acoust. Soc. Am. 100 206
[10] Taroudakis M I 1996 J. Comput. Acoust. 4 101
[11] Eskenazi J 2001 Master's Thesis (Cambridge: Massachusetts Institute of Technology)
[12] McDonald B E, Collins M D, Kuperman W A and Heaney K D 1994 J. Acoust. Soc. Am. 96 2357
[13] Athanassoulis G A and Belibassakis K A 1997 J. Acoust. Soc. Am. 101 3371
[14] Jensen F B, Kuperman W A, Porter M B and Schmidt H 1994 Computational Ocean Acoustics (New York: American Institute of Physics)
[15] Ricks D C and Schmidt H 1994 J. Acoust. Soc. Am. 95 3339
[16] Luo W 2007 Ph.D. Thesis (Cambridge: Massachusetts Institute of Technology)
[17] Luo W 2009 J. Acoust. Soc. Am. 125 52
[18] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Appl. Math. Ser. No 55 (Washington, DC: National Bureau of Standards)
[19] Evans R B and Gilbert K E 1985 Comp. Math. Appl. 11 795
[20] Kim H J 2009 Ph.D. Thesis (Cambridge: Massachusetts Institute of Technology)
Related articles from Frontiers Journals
[1] LUO Wen-Yu**, YANG Chun-Mei, ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides[J]. Chin. Phys. Lett., 2012, 29(1): 094304
[2] LI Qian-Qian, **, LI Zheng-Lin, ZHANG Ren-He . Applications of Waveguide Invariant Theory to the Analysis of Interference Phenomena in Deep Water[J]. Chin. Phys. Lett., 2011, 28(3): 094304
[3] WANG Hao-Zhong, WANG Ning, GAO Da-Zhi . Data-Derived Estimation of Source Depth Using Vertical Line Array Data in Shallow Water[J]. Chin. Phys. Lett., 2011, 28(11): 094304
[4] ZHANG Yan-Jun, ZHANG Ren-He, LI Feng-Hua. Frequency Dependence of Transverse Correlation Coefficient in the Yellow Sea[J]. Chin. Phys. Lett., 2010, 27(8): 094304
[5] ZHAO Zhen-Dong, WANG Ning, GAO Da-Zhi, WANG Hao-Zhong. Broadband Source Ranging in Shallow Water Using the Ω-Interference Spectrum[J]. Chin. Phys. Lett., 2010, 27(6): 094304
[6] LUO Wen-Yu**, SCHMIDT Henrik. Three-Dimensional Mode Coupling around a Conical Seamount and the Use of Random Discretization[J]. Chin. Phys. Lett., 2010, 27(11): 094304
[7] LI Feng-Hua, ZHANG Ren-He. Frequency Dependence of Longitudinal Correlation Length inthe Yellow Sea[J]. Chin. Phys. Lett., 2008, 25(7): 094304
[8] PENG Han-Shu, LI Feng-Hua. Geoacoustic Inversion Based on a Vector Hydrophone Array[J]. Chin. Phys. Lett., 2007, 24(7): 094304
[9] ZHANG Ren-He, SU Xiao-Xing, LI Feng-Hua. Improvement of Low-Frequency Acoustic Spatial Correlation by Frequency-Shift Compensation[J]. Chin. Phys. Lett., 2006, 23(7): 094304
[10] LIU Jian-Jun, LI Feng-Hua, PENG Zhao-Hui. Stochastic Inversion of Seabottom Scattering Coefficients from Shallow-Water Reverberation[J]. Chin. Phys. Lett., 2003, 20(12): 094304
[11] LI Feng-Hua, LIU Jian-Jun. Bistatic Reverberation in Shallow Water: Modeling and Data Comparison[J]. Chin. Phys. Lett., 2002, 19(8): 094304
[12] GUO Liang-Hao, GONG Zai-Xiao, Wu Li-Xin. Space and Time Coherence of Acoustic Field in Shallow-Water [J]. Chin. Phys. Lett., 2001, 18(10): 094304
Viewed
Full text


Abstract