Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 094208    DOI: 10.1088/0256-307X/27/9/094208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High-Frequency Einstein-Podolsky-Rosen Entanglement via Atomic Memory Effects in Four-Wave Mixing

ZHANG Xue-Hua, HU Xiang-Ming, KONG Ling-Feng, ZHANG Xiu

Department of Physics, Huazhong Normal University, Wuhan 430079
Cite this article:   
ZHANG Xue-Hua, HU Xiang-Ming, KONG Ling-Feng et al  2010 Chin. Phys. Lett. 27 094208
Download: PDF(570KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Atomic memory effects occur when the atomic relaxation times are comparable to or much longer than the cavity relaxation times. We show that by using the memory effects, it is possible to obtain high-frequency Einstein-Podolsky-Rosen entanglement between a pair of Stokes and anti-Stokes fields in a four-wave mixing system. The physical origin is traced to the dynamical Stark splittings of dressed states due to the parametrically amplified fields. This mechanism provides an alternative and efficient way for sideband entanglement.

Keywords: 42.50.Lc      42.50.Pq      32.80.Qk     
Received: 08 April 2010      Published: 25 August 2010
PACS:  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/094208       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/094208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xue-Hua
HU Xiang-Ming
KONG Ling-Feng
ZHANG Xiu
[1] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University)
[2] Carmichael H J 1986 Phys. Rev. A 33 3262
[3] Reid M D 1988 Phys. Rev. A 37 4792
[4] Scully M O, Sussmann G and Benkert C 1988 Phys. Rev. Lett. 60 1014
[5] Benkert C and Scully M O 1990 Phys. Rev. A 42 2817
[6] Benkert C, Scully M O, Rangwala A A and Schleich W 1990 Phys. Rev. A 42 1503
[7] Benkert C, Scully M O and Sussmann G 1990 Phys. Rev. A 41 6119
[8] Orszag M and Saavedra C 1991 Phys. Rev. A 43 554
[9] Kolobov M I, Davidovich L, Giacobino E and Fabre C 1993 Phys. Rev. A 47 1431
[10] Davidovich L 1996 Rev. Mod. Phys. 68 127
[11] Harris S E 1993 Phys. Rev. Lett. 70 552
[12] Harris S E 1994 Phys. Rev. Lett. 72 52
[13] Boyer V, McCormick C F, Arimondo E and Lett P D 2007 Phys. Rev. Lett. 99 143601
[14] Fleischhauer M 1994 Phys. Rev. Lett. 72 989
[15] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2409
[16] Slusher R E, Yurke B, Grangier P, LaPorta A, Walls D F and Reid M 1987 J. Opt. Soc. Am . B 4 1453
[17] Schumaker B L, Perlmutter S H, Shelby R M and Levenson M D 1987 Phys. Rev. Lett. 58 357
[18] Reid M D and Drummond P D 1988 Phys. Rev. Lett. 60 2731
[19] Reid M D 1989 Phys. Rev . A 40 913
[20] Drummond P D and Reid M D 1990 Phys. Rev. A 41 3930
[21] Reid M D and Walls D F 1985 Phys. Rev . A 31 1622
[22] Paul A E, Lindberg M, An S and Sargent III M 1990 Phys. Rev. A 42 1725
[23] Ikram M, Li G X and Zubairy M S 2007 Phys. Rev. A 76 042317
[24] Macovei M and Li G X 2007 Phys. Rev. A 76 023818
[25] Pielawa S, Morigi G, Vitali D and Davidovich L 2007 Phys. Rev. Lett. 98 240401
[26] Cheng G L, Hu X M, Zhong W X and Li Q 2008 Phys. Rev . A 78 033811
[27] Li J Y and Hu X M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 055501
[28] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[29] Zhu Y Z, Hu X M, Wang F and Li J Y 2010 Chin. Phys. Lett. 27 044210
[30] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[31] Lukin M D, Matsko A B, Fleischhauer M and Scully M O 1999 Phys. Rev. Lett. 82 1847
[32] Zibrov A S, Lukin M D and Scully M O Phys. Rev. Lett. 83 4049
[33] Cohen-Tannoudji C, Dupont-Roc J and Grynbery G 1992 Atom-Photon Interactions (New York: Wiley)
[34] Drummond P D and Gardiner C W 1980 J. Phys. A: Math. Gen. 13 2353
[35] Drummond P D and Walls D F 1981 Phys. Rev . A 23 2563
[36] Gardiner C W and Zoller P 2000 Quantum Noise 2nd edn (Berlin: Springer)
[37] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
Related articles from Frontiers Journals
[1] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 094208
[2] HU Zheng-Feng**,LIN Jin-Da,DENG Jian-Liao,HE Hui-Juan,WANG Yu-Zhu. Gain and Absorption of a Probe Light in an Open Tripod Atomic System[J]. Chin. Phys. Lett., 2012, 29(5): 094208
[3] LIU Yang, WU Jing-Hui, SHI Bao-Sen, GUO Guang-Can. Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth[J]. Chin. Phys. Lett., 2012, 29(2): 094208
[4] LI Zhong-Hua, LI Yuan, DOU Ya-Fang, GAO Jiang-Rui, ZHANG Jun-Xiang**. Comparison of the Noise Properties of Squeezed Probe Light in Optically Thick and Thin Quantum Coherence Media for Weak and Strong Coupling Lights[J]. Chin. Phys. Lett., 2012, 29(1): 094208
[5] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 094208
[6] LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi** . Quantum Information Transfer in Circuit QED with Landau–Zener Tunneling[J]. Chin. Phys. Lett., 2011, 28(9): 094208
[7] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 094208
[8] LIU Kui, CUI Shu-Zhen, ZHANG Hai-Long, ZHANG Jun-Xiang, GAO Jiang-Rui** . Noise Suppression of a Single Frequency Fiber Laser[J]. Chin. Phys. Lett., 2011, 28(7): 094208
[9] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 094208
[10] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 094208
[11] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 094208
[12] XUE Peng** . Entangling Gate of Dipolar Molecules Coupled to a Photonic Crystal[J]. Chin. Phys. Lett., 2011, 28(5): 094208
[13] ZHANG Peng-Fei, ZHANG Yu-Chi, LI Gang, DU Jin-Jin, ZHANG Yan-Feng, GUO Yan-Qiang, WANG Jun-Min, ZHANG Tian-Cai**, LI Wei-Dong . Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System[J]. Chin. Phys. Lett., 2011, 28(4): 094208
[14] ZHONG Zhi-Rong**, ZHANG Bin, LIN Xiu, SU Wan-Jun . An Effective Heisenberg Spin Chain in a Fiber-Cavity System[J]. Chin. Phys. Lett., 2011, 28(12): 094208
[15] ZOU Wei-Ping, ZHANG Gang, XUE Zheng-Yuan** . Arbitrary and Fast Quantum Gate with Semiconductor Double-Dot Molecules on a Chip[J]. Chin. Phys. Lett., 2011, 28(12): 094208
Viewed
Full text


Abstract