ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Photoabsorption Spectra of (SiO2)n (n≤5) Clusters on the Basis of Time-Dependent Density Functional Theory |
LIU Dan-Dan, ZHANG Hong |
School of Physical Science and Technology, Sichuan University, Chengdu 610065 |
|
Cite this article: |
LIU Dan-Dan, ZHANG Hong 2010 Chin. Phys. Lett. 27 093601 |
|
|
Abstract The photoabsorption spectra of (SiO2)n (n=2-5) clusters [including isomers (D3h,D2d) structures of (SiO2)3 and (C2v,D2h,D4h) structures of (SiO2)4] are calculated by using time-dependent density-function theory. The equilibrium geometries, the binding energy, the gap between the highest occupied and lowest unoccupied molecular orbitals and vertical ionization potential for corresponding structures are computed using several methods with different types of the basis functions. It is found that the polarizability functions are necessary for the basis functions when optimize the structures of silicon oxide clusters. For different geometries of various clusters and the related isomers, their spectra are very different. Meanwhile, the comparison between using local-density generalized-gradient approximations for exchange-correlation potentials shows that both the calculated spectra present the same spectral feature. We suggest that the calculated photoabsorption spectra could be taken as a tool to elucidate the isomers and clusters structure.
|
Keywords:
36.40.Mr
36.20.Kd
71.15.Mb
|
|
Received: 29 March 2010
Published: 25 August 2010
|
|
PACS: |
36.40.Mr
|
(Spectroscopy and geometrical structure of clusters)
|
|
36.20.Kd
|
(Electronic structure and spectra)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
|
|
|
[1] Helms C R and Deal B E 1998 The Physics and Chemistry of SiO2 and Si-SiO2Interface (New York: Plenum) [2] Lu W C et al 2003 J. Phys. Chem. A 107 6936-6943 [3] Harkless J A W et al 1996 J. Phys. Chem. 100 1098 [4] Nayak S k et al 1998 J. Chem. Phys. 109 1245 [5] Chu T S et al 2001 J. Phys. Chem. B 105 1705 [6] Zhang R Q et al 2001 J. Chem. Phys. 114 5531 [7] Zhao M R et al 2004 Phys. Rev. B 69 153403 [8] Bromley S T et al 2003 Phys. Rev. Lett. 90 035502 [9] Zhang D J et al 2004 J. Phys. Chem. B 108 18451 [10] Xi Z X et al 2008 J. Phys. Chem. C 112 17071 [11] Chelikowsky J R 1998 Phys. Rev. B 57 3333 [12] Schäfer R and Becker J A 1996 Phys. Rev. B 54 10296 [13] Rinnen K D et al 1992 Phys. Rev. Lett. 69 1823 [14] Wang C R C et al 1992 J. Chem. Phys. 96 7931 [15] Presilla-Márquez J D et al 1996 J. Chem. Phys. 104 2818 [16] Sieck A et al 1997 Phys. Rev. A 56 4890 [17] Martínez J I et al 2006 J. Comput. Theor. Nanosci. 3 761 [18] Cheshnovsky O et al 1987 Chem. Phys. Lett. 138 119 [19] Joswig J O et al 2008 J. Chem. Phys. 128 014707 [20] Martinez J I et al 2009 Eur. Phys. J. D 52 199 [21] Martinez J I et al 2006 J. Chem. Phys. 125 074311 [22] Koponen L et al 2007 J. Chem. Phys 126 214306 [23] An FF et al 2009 Commun. Theor. Phys. 51 751 [24] Rubio A et al 1996 Phys. Rev. Lett. 77 247 [25] Vasiliev I et al 2002 Phys. Rev. B 65 115416 [26] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997 [27] Marques M A L et al 2004 Annu. Rev. Phys. Chem. 55 427 [28] Frisch M J, Trucks G W, Schlegel H B et al 2003 Gaussian 03 Revision B.02, (Gaussian, Inc., Pittsburgh, PA) [29] Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60 [30] Castro A et al 2006 Phys. Status Solidi B 243 2465 [31] Castro A et al 2004 J. Chem. Phys. 121 3425 [32] Kohn K and Sham L J 1965 Phys. Rev. 140 A1133 [33] Perdew J P et al 1996 Phys. Rev. Lett. 77 3865 [34] Marques M A L et al 2001 J. Chem. Phys. 115 3006
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|