NUCLEAR PHYSICS |
|
|
|
|
Effects of Pairing Correlations on Formation of Proton Halo in 9C |
HAN Rui1, LI Jia-Xing1, YAO Jiang-Ming1, JI Juan-Xia1, WANG Jian-Song2, HU Qiang2 |
1School of Physical Science and Technology, Southwest University, Chongqing 400715 2Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 |
|
Cite this article: |
HAN Rui, LI Jia-Xing, YAO Jiang-Ming et al 2010 Chin. Phys. Lett. 27 092101 |
|
|
Abstract Properties for the ground state of 9C are studied in the relativistic continuum Hartree-Bogoliubov theory with the NLSH, NLLN and TM2 effective interactions. Pairing correlations are taken into account by a density-dependent δ-force with the pairing strength for protons determined by fitting either to the experimental binding energy or to the odd-even mass difference from the five-point formula. The effects of pairing correlations on the formation of proton halo in the ground state of 9C are examined. The halo structure is shown to be formed by the partially occupied valence proton levels p3/2 and p1/2.
|
Keywords:
21.10.Dr
21.10.Gv
21.60.Jz
27.20.+n
|
|
Received: 27 April 2010
Published: 25 August 2010
|
|
PACS: |
21.10.Dr
|
(Binding energies and masses)
|
|
21.10.Gv
|
(Nucleon distributions and halo features)
|
|
21.60.Jz
|
(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
|
|
27.20.+n
|
(6 ≤ A ≤ 19)
|
|
|
|
|
[1] Tanihata I et al 1985 Phys. Rev. Lett 55 2676 [2] Riisager K 1994 Rev. Mod. Phys 66 1105 [3] Hansen P G, Jensen A S and Jonson B 1995 Ann. Rev. Nucl. Part. Sci 45 591 [4] Tanihata I 1995 Prog. part. Nucl. Phys. 35 505 [5] Tanihata I 1996 J. Phys. G: Nucl. Part. Phys. 22 157 [6] Jensen A S et al 2004 Rev. Mod. Phys. 76 215 [7] Negoita F et al 1996 Phys. Rev. C 54 1787 [8] Smedberg M H et al 1999 Phys. lett. B 452 1 [9] Fukuda M et al 1999 Nucl. Phys. A 656 209 [10] Guimaraes V et al 2000 Phys. Rev. Lett. 84 1862 [11] Carstoiu F et al 2001 Phys. Rev. C 63 054310 [12] Chandel S S, Dhiman S K and Shyam R 2003 Phys. Rev. C 68 054320 [13] Ozawa A et al 1994 Phys. Lett. B 334 18 [14] Zhukov M V and Thompson I J 1995 Phys. Rev. C 52 3505 [15] Suzuki T et al 1997 Nucl. Phys. A 616 286c [16] Ozawa et al 2006 Phys. Rev. C 74 021301 [17] Ren Z Z 1996 Phys. Rev. C 53 R572 [18] Lewis R and Hayes C A 1999 Phys. Rev. C 59 1211 [19] Zhou D et al 2007 J. Phys. G: Nucl. Part. Phys. 34 523 [20] Matsuta K et al 1995 Nucl. Phys. A 588 153c [21] Audi G, Wapstra A H and Thibault C 2003 Nucl. Phys. A 729 337 [22] Ozawa A et al 1996 Nucl. Phys. A 608 63 [23] Blank B et al 1997 Nucl. Phys. A 624 242 [24] Nishimura D et al 2006 Annual Report , Osaka University [25] Varga K, Suzuki Y, and Tanihata I 1995 Phys. Rev. C 52 3013 [26] Gupta R K et al 2002 J. Phys. G: Nucl. Part. Phys. 28 699 [27] Li Z H et al 2005 Chin. Phys. Lett. 22 1870 [28] Bai X H and Hu J M 1997 Phys. Rev. C 56 1410 [29] Lalazissis G A, Ring P and Vretenar D 2004 Lecture Notes in Physics ed (Berlin: Springer) vol 641 [30] Kohn W and Sham L J 1965 Phys. Rev. A 137 1697 [31] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1 [32] Reinhard P G 1989 Rep. Prog. Phys. 52 439 [33] Ring R 1996 Prog. Part Nucl. Phys. 37 193 [34] Chen J G et al 2004 Chin. Phys. Lett. 21 2140 [35] Vretenar D et al 2005 Phys. Rep. 409 101 [36] Yao J M, Chen H and Meng J 2006 Phys. Rev. C 74 024307 [37] Meng J et al 2006 Prog. Part. Nucl. Phys. 57 470 [38] Yao J M et al 2008 Phys. Rev. C 77 024315 [39] Ren Z Z et al 1996 Nucl. Phys. A 605 75 [40] Wang C B et al 2009 Comm. Theor. Phys. 51 895 [41] Meng J 1998 Nucl. Phys. A 635 3 [42] Meng J and Ring P 1998 Phys. Rev. Lett. 80 460 [43] Zhang S Q et al 2002 Chin. Phys. Lett. 19 312 [44] Long W H et al 2010 Phys. Rev. C 81 024308 [45] Sharma M M et al 1993 Phys. Lett. B 312 377 [46] Sun B Y and Meng J 2006 High Energy Phys. Nucl. Phys. 30 87 [47] Sugahara Y and Toki H 1994 Nucl. Phys. A 579 557 [48] Bender M et al 2000 Eur. Phys. J. A 8 59 [49] Ozawa A et al 2001 Nucl. Phys. A 693 32
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|