Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 090504    DOI: 10.1088/0256-307X/27/9/090504
GENERAL |
Fast-Scale and Slow-Scale Subharmonic Oscillation of Valley Current-Mode Controlled Buck Converter

ZHOU Guo-Hua1, XU Jian-Ping1, BAO Bo-Cheng2, ZHANG Fei1, LIU Xue-Shan1

1School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031 2School of Electrical and Information Engineering, Jiangsu Teachers University of Technology, Changzhou 213001
Cite this article:   
ZHOU Guo-Hua, XU Jian-Ping, BAO Bo-Cheng et al  2010 Chin. Phys. Lett. 27 090504
Download: PDF(639KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A valley current-mode (VCM) controlled buck converter with current source load (CSI) has complex phenomena of fast-scale and slow-scale subharmonic oscillations. The piecewise smooth switching model of the VCM controlled buck converter with CSI is established. It is found that attractive regions of fast-scale and slow-scale subharmonic oscillations exist in the bifurcation diagram, and two tori exist in the corresponding Poincaré mapping. The research results by time-domain simulation indicate that U-type subharmonic oscillation (SO) constituted by SO and frequency-reduced subharmonic oscillation (FSO) exists in inductor current, and sine-type SO constituted by fast scale and low scale exists in output voltage respectively. Experimental results are given to verify the analysis and simulation results.

Keywords: 05.45.-a      05.45.Pq     
Received: 25 December 2009      Published: 25 August 2010
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/090504       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/090504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Guo-Hua
XU Jian-Ping
BAO Bo-Cheng
ZHANG Fei
LIU Xue-Shan
[1] Cafagnad D and Grassi G 2006 Nonlinear Dynamics 44 251
[2] Zhang X T et al 2008 Acta Phys. Sin. 57 6174 (in Chinese)
[3] Wang F Q et al 2008 Acta Phys. Sin. 57 1522 (in Chinese)
[4] Wang F Q et al 2008 Acta Phys. Sin. 57 2842 (in Chinese)
[5] Zhou G H, Bao B C, Xu J P and Jin Y Y 2010 Chin. Phys. B 19 050509
[6] Zhou G H, Xu J P and Bao B C 2010 Acta Phys. Sin. 59 2272 (in Chinese)
[7] Bao B C, Xu J P and Liu Z 2009 Acta Phys. Sin. 58 2949 (in Chinese)
[8] Bao B C, Xu J P and Liu Z 2009 Chin. Phys. B 18 4742
[9] Zhou G H et al 2010 Chin. Phys. B 19 060508
[10] Qin Z Y and Lu Q C 2007 Chin. Phys. Lett. 24 886
[11] Zhou Y F et al 2008 Int. J. Bifur. Chaos 18 121
[12] Wu X, Tse C K, Dranga O and Lu J 2006 IEEE Trans. Circuits Syst. I 53 204
[13] Zou J L et al 2006 Int. J. Circ. Theor. Appl. 34 251
[14] Wong S C et al 2006 IEEE Trans. Circuits Syst. I 53 454
[15] Mazumder S K et al 2001 IEEE Trans. Power Electron. 16 201
[16] Iu H H C et al 2001 Int. J. Circ. Theor. Appl. 29 281
[17] Huang Y H, Iu H H C and Tse C K 2008 Int. J. Circ. Theor. Appl. 36 681
[18] Chen Y F, Tse C K, Qiu S S, Lindenmüller L and Schwarz W 2008 IEEE Trans. Circuits Syst. I 55 3335
[19] Wu C H and Chen C L 2009 IEEE Trans. Circuits Syst. II 56 763
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 090504
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 090504
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 090504
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 090504
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 090504
[11] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 090504
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 090504
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 090504
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 090504
[15] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 090504
Viewed
Full text


Abstract