GENERAL |
|
|
|
|
Fast-Scale and Slow-Scale Subharmonic Oscillation of Valley Current-Mode Controlled Buck Converter |
ZHOU Guo-Hua1, XU Jian-Ping1, BAO Bo-Cheng2, ZHANG Fei1, LIU Xue-Shan1 |
1School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031 2School of Electrical and Information Engineering, Jiangsu Teachers University of Technology, Changzhou 213001 |
|
Cite this article: |
ZHOU Guo-Hua, XU Jian-Ping, BAO Bo-Cheng et al 2010 Chin. Phys. Lett. 27 090504 |
|
|
Abstract A valley current-mode (VCM) controlled buck converter with current source load (CSI) has complex phenomena of fast-scale and slow-scale subharmonic oscillations. The piecewise smooth switching model of the VCM controlled buck converter with CSI is established. It is found that attractive regions of fast-scale and slow-scale subharmonic oscillations exist in the bifurcation diagram, and two tori exist in the corresponding Poincaré mapping. The research results by time-domain simulation indicate that U-type subharmonic oscillation (SO) constituted by SO and frequency-reduced subharmonic oscillation (FSO) exists in inductor current, and sine-type SO constituted by fast scale and low scale exists in output voltage respectively. Experimental results are given to verify the analysis and simulation results.
|
Keywords:
05.45.-a
05.45.Pq
|
|
Received: 25 December 2009
Published: 25 August 2010
|
|
PACS: |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
|
|
|
[1] Cafagnad D and Grassi G 2006 Nonlinear Dynamics 44 251 [2] Zhang X T et al 2008 Acta Phys. Sin. 57 6174 (in Chinese) [3] Wang F Q et al 2008 Acta Phys. Sin. 57 1522 (in Chinese) [4] Wang F Q et al 2008 Acta Phys. Sin. 57 2842 (in Chinese) [5] Zhou G H, Bao B C, Xu J P and Jin Y Y 2010 Chin. Phys. B 19 050509 [6] Zhou G H, Xu J P and Bao B C 2010 Acta Phys. Sin. 59 2272 (in Chinese) [7] Bao B C, Xu J P and Liu Z 2009 Acta Phys. Sin. 58 2949 (in Chinese) [8] Bao B C, Xu J P and Liu Z 2009 Chin. Phys. B 18 4742 [9] Zhou G H et al 2010 Chin. Phys. B 19 060508 [10] Qin Z Y and Lu Q C 2007 Chin. Phys. Lett. 24 886 [11] Zhou Y F et al 2008 Int. J. Bifur. Chaos 18 121 [12] Wu X, Tse C K, Dranga O and Lu J 2006 IEEE Trans. Circuits Syst. I 53 204 [13] Zou J L et al 2006 Int. J. Circ. Theor. Appl. 34 251 [14] Wong S C et al 2006 IEEE Trans. Circuits Syst. I 53 454 [15] Mazumder S K et al 2001 IEEE Trans. Power Electron. 16 201 [16] Iu H H C et al 2001 Int. J. Circ. Theor. Appl. 29 281 [17] Huang Y H, Iu H H C and Tse C K 2008 Int. J. Circ. Theor. Appl. 36 681 [18] Chen Y F, Tse C K, Qiu S S, Lindenmüller L and Schwarz W 2008 IEEE Trans. Circuits Syst. I 55 3335 [19] Wu C H and Chen C L 2009 IEEE Trans. Circuits Syst. II 56 763
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|