Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 090503    DOI: 10.1088/0256-307X/27/9/090503
GENERAL |
Chaotic System Identification Based on a Fuzzy Wiener Model with Particle Swarm Optimization

LI Yong1, TANG Ying-Gan2

1Key Laboratory of Network Control and Intelligent Instrument (Ministry of Education), Chongqing University of Posts and Telecommunications, Chongqing 400065 2Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004
Cite this article:   
LI Yong, TANG Ying-Gan 2010 Chin. Phys. Lett. 27 090503
Download: PDF(561KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A fuzzy Wiener model is proposed to identify chaotic systems. The proposed fuzzy Wiener model consists of two parts, one is a linear dynamic subsystem and the other is a static nonlinear part, which is represented by the Takagi-Sugeno fuzzy model. Identification of chaotic systems is converted to find optimal parameters of the fuzzy Wiener model by minimizing the state error between the original chaotic system and the fuzzy Wiener model. Particle swarm optimization algorithm, a global optimizer, is used to search the optimal parameter of the fuzzy Wiener model. The proposed method can identify the parameters of the linear part and nonlinear part simultaneously. Numerical simulations for Henón and Lozi chaotic system identification show the effectiveness of the proposed method.

Keywords: 05.45.Pq     
Received: 08 February 2010      Published: 25 August 2010
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/090503       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/090503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yong
TANG Ying-Gan
[1] Chen G and Dong X 1998 From Chaos to Order (Singapore: World Scientific)
[2] Lin S L and Tung P C 2009 Chaos Solitons Fractals 42 3234
[3] Barrett M D 1996 Phyica D 91 340
[4] Gao J H and Zheng Z G 2007 Chin. Phys. Lett. 24 359
[5] Sun F Y 2006 Chin. Phys. Lett. 23 32
[6] Yau H T and Shieh C S 2008 Nonlinear Analysis: Real World Applications 9 1800
[7] Guan X P, Peng H P, Li L X and Wang Y Q 2001 Acta. Phys. Sin. 50 26 (in Chinese)
[8] Parlitz U 1996 Phys. Rev. Lett. 76 1232
[9] Tang Y G and Guan X P 2009 Chaos Solitons Fractals 40 1391
[10] Chen G R, Chen Y and Ogmen H 1997 IEEE Control Systems Mag. 17 29
[11] Ming X, Chen G R and Tian Y T 2001 Mathematical and Computer Modeling 33 483
[12] Yeh J P 2007 Chaos Solitons Fractals 32 1178
[13] Takagi T and Sugeno M 1985 IEEE Trans. Systems, Man and Cybernetics 15 116
[14] Kennedy J, Eberhart R C and Shi Y 2001 Swarm Intelligence (San Francisco, CA: Morgan Kaufman)
[15] Rosenstein M T T, Collins J J and Luca C J D 1993 Physica D 65 117
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 090503
[2] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 090503
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 090503
[4] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 090503
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 090503
[6] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 090503
[7] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 090503
[8] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 090503
[9] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 090503
[10] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 090503
[11] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 090503
[12] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 090503
[13] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 090503
[14] Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 090503
[15] YU Cun-Juan**, TAN Ying-Xin . Frequency-Locking in a Spatially Extended Predator-Prey Model[J]. Chin. Phys. Lett., 2011, 28(1): 090503
Viewed
Full text


Abstract