Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 090501    DOI: 10.1088/0256-307X/27/9/090501
GENERAL |
Analytical Approach to Space- and Time-Fractional Burgers Equations
Ahmet Yıldırım1, Syed Tauseef Mohyud-Din2**
1Department of Mathematics, Ege University, 35100 Bornova-Izmir, Turkey 2HITEC University, Taxila Cantt, Pakistan
Cite this article:   
Ahmet Y�, ld�, r� et al  2010 Chin. Phys. Lett. 27 090501
Download: PDF(1519KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A scheme is developed to study numerical solution of the space- and time-fractional Burgers equations under initial conditions by the homotopy analysis method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed.

Keywords: 05.40.+j      05.70.Ln     
Received: 07 April 2010      Published: 25 August 2010
PACS:  05.40.+j  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/090501       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/090501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ahmet Y�
ld�
r�
m
Syed Tauseef Mohyud-Din
[1] Momani S 2006 Chaos Sol. Frac. 28 930
[2] Biler P et al 1998 J. Diff. Equations 148 9
[3] Biler P et al 2001 Ann. Henri Poincaré 18 613
[4] Mann J A and Woyczynski W A 2001 Physica A 291 159
[5] Stanescu D et al 2005 J. Comput. Phys. 206 706
[6] Inc M 2008 J. Math. Anal. Appl. 345 476
[7] Sugimoto N 1991 J. Fluid Mech. 225 631
[8] Chen W 2005 Chin. Phys. Lett. 22 2601
[9] Sun H G et al 2010 Physica A 389 2719
[10] Chen W et al 2010 Int. J. Nonl. Sci. Num. Sim. 11 3
[11] Liao S J 1992 PhD Dissertation (Shanghai: Shanghai Jiao Tong University)
[12] Liao S J 1995 Int. J. Non-Linear Mech. 30 371
[13] Liao S J 1997 Int. J. Non-Linear Mech. 32 815
[14] Liao S J 1999 Int. J. Non-Linear Mech. 34 759
[15] Liao S J 2003 Beyond Perturbation: Introduction to the Homotopy Analysis Method (Boca Raton: Chapman & Hall, CRC Press)
[16] Liao S J 2004 Appl. Math. Comput. 147 499
[17] Liao S J and Campo A 2002 J. Fluid Mech. 453 411
[18] Liao S J 2003 J. Fluid Mech. 488 189
[19] Ayub M, Rasheed A and Hayat T 2003 Int. J. Eng. Sci. 41 2091
[20] Hayat T, Khan M and Asghar S 2004 Acta Mech. 168 213
[21] Hayat T et al 2004 Appl. Math. Comput. 155 417
[22] Abbasbandy S 2007 Int. Comm. Heat Mass Transfer 34 380
[23] Abbasbandy S 2007 Phys. Lett. A 361 478
[24] Abbasbandy S 2008 Chem. Eng. J. 136 144
[25] Bataineh A S, Noorani M S M and Hashim I 2008 Comm. Non. Sci. Num. Sim. 13 2060
[26] Miller K S and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential Equations (New York: Wiley)
[27] Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives: Theory and Applications (Yverdon: Gordon and Breach)
[28] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press)
[29] Luchko Y and Gorneflo R 1998 The Initial Value Problem for Some Fractional Differential Equations with the Caputo Derivative (Preprint series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin)
[30] Caputo M 1967 J. Roy. Astron. Soc. 13 529
Related articles from Frontiers Journals
[1] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 090501
[2] WU An-Cai . Percolation of Mobile Individuals on Weighted Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(11): 090501
[3] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 090501
[4] ZHANG Yan-Ping, HE Ji-Zhou. Thermodynamic Performance Characteristics of an Irreversible Micro-Brownian Heat Engine Driven by Temperature Difference[J]. Chin. Phys. Lett., 2010, 27(9): 090501
[5] HUA Da-Yin, WANG Lie-Yan. Phase Transition of the Pair Contact Process Model in a Fragmented Network[J]. Chin. Phys. Lett., 2010, 27(9): 090501
[6] PAN Xin, DENG Gui-Shi, LIU Jian-Guo,. Information Filtering via Improved Similarity Definition[J]. Chin. Phys. Lett., 2010, 27(6): 090501
[7] WANG Xin-Xin, BAO Jing-Dong. A Scheme for Information Erasure in a Double-Well Potential[J]. Chin. Phys. Lett., 2010, 27(2): 090501
[8] NIE Lin-Ru, GONG Yu-Lan, MEI Dong-Cheng. Stochastic Resonance in a Spatially Symmetric and Flashing Periodic Potential Subjected to Correlated Noises[J]. Chin. Phys. Lett., 2009, 26(10): 090501
[9] CHEN Ting, HUA Da-Yin, LIN Su. Kinetic Phase Transition in A2+B2 → 2AB Reaction System with Particle Diffusion[J]. Chin. Phys. Lett., 2007, 24(9): 090501
[10] ZHAO Hui, GAO Zi-You. Modular Epidemic Spreading in Small-World Networks[J]. Chin. Phys. Lett., 2007, 24(4): 090501
[11] LI Xin-Xia, TANG Yi. Anomalous Heat Conduction in One-Dimensional Dimerized Lattices[J]. Chin. Phys. Lett., 2007, 24(4): 090501
[12] CAO Zhou-Jian, LI Peng-Fei, HU Gang,. From Autonomous Coherence Resonance to Periodically Driven Stochastic Resonance[J]. Chin. Phys. Lett., 2007, 24(4): 090501
[13] YAMG Meng-Long, LIU Yi-Guang, YOU Zhi-Sheng. A New Cellular Automata Model Considering Finite Deceleration and Braking Distance[J]. Chin. Phys. Lett., 2007, 24(10): 090501
[14] REN Qing-Bao, ZHOU Zhen-Chun, CHEN Ju, LUO Meng-Bo. Creep Motion in Two-Dimensional Fully Frustrated Coulomb Gas Model[J]. Chin. Phys. Lett., 2007, 24(1): 090501
[15] YUAN Guo-Yong, ZHANG Guang-Cai, WANG Guang-Rui, CHEN Shi-Gang, SUN Peng,. Elimination of Spiral Waves and Competition between Travelling Wave Impulses and Spiral Waves[J]. Chin. Phys. Lett., 2005, 22(2): 090501
Viewed
Full text


Abstract