Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 090302    DOI: 10.1088/0256-307X/27/9/090302
GENERAL |
Wigner Functions for the Bateman System on Noncommutative Phase Space

HENG Tai-Hua1, LIN Bing-Sheng2, JING Si-Cong2

1School of Physics and Material Science, Anhui University, Hefei 230039 2Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong 2010 Chin. Phys. Lett. 27 090302
Download: PDF(422KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra.

Keywords: 03.65.-w      05.30.-d     
Received: 06 April 2010      Published: 25 August 2010
PACS:  03.65.-w (Quantum mechanics)  
  05.30.-d (Quantum statistical mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/090302       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/090302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HENG Tai-Hua
LIN Bing-Sheng
JING Si-Cong
[1] Wigner E 1932 Phys. Rev. 40 749
[2] Fairlie D and Manogue C 1991 J. Phys. A: Math. Gen. 24 3807
Zachos C 2002 Int. J. Mod. Phys. A 17 297
[3] Bayen F, Flato M, Fronsdal C, Lichnerrowicz A and Sternheimei D 1978 Ann. Phys. (N.Y.) 111 61
Bayen F, Flato M, Fronsdal C, Lichnerrowicz A and Sternheimei D 1978 Ann. Phys. (N.Y.) 111 111
[4] Jing S C, Heng T H and Zuo F 2005 Phys. Lett. A 335 185
[5] Baker G 1958 Phys. Rev. 109 2198
[6] Pontriagin L, Boltańskij V, Gamkrelidze R and Miscenko E 1962 The Mathematical Theory of Optimal Processes (New York: Wiley)
[7] Kossakowski A 2001 Open Sys. Information Dyn. 9 1
[8] Chrusciński D 2002 Open Sys. Information Dyn. 9 207
Chrusciński D 2006 Rep. Math. Phys. 57 319
[9] Bateman H 1931 Phys. Rev. 38 815
[10] Chrusciński D 2006 Ann. Phys. 321 854
[11] Chrusciński D Wigner Function for Damped Systems (math-ph/0209008)
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 090302
[2] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 090302
[3] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 090302
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 090302
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 090302
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 090302
[7] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 090302
[8] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 090302
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 090302
[10] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 090302
[11] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 090302
[12] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 090302
[13] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 090302
[14] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 090302
[15] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 090302
Viewed
Full text


Abstract