Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 090301    DOI: 10.1088/0256-307X/27/9/090301
GENERAL |
A New Quantum Key Distribution Scheme Based on Frequency and Time Coding

ZHU Chang-Hua, PEI Chang-Xing, QUAN Dong-Xiao, GAO Jing-Liang, CHEN Nan, YI Yun-Hui

State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071
Cite this article:   
ZHU Chang-Hua, PEI Chang-Xing, QUAN Dong-Xiao et al  2010 Chin. Phys. Lett. 27 090301
Download: PDF(439KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new scheme of quantum key distribution (QKD) using frequency and time coding is proposed, in which the security is based on the frequency-time uncertainty relation. In this scheme, the binary information sequence is encoded randomly on either the central frequency or the time delay of the optical pulse at the sender. The central frequency of the single photon pulse is set as ω1 for bit 0 and set as ω2 for bit 1 when frequency coding is selected. However, the single photon pulse is not delayed for bit 0 and is delayed in τ for 1 when time coding is selected. At the receiver, either the frequency or the time delay of the pulse is measured randomly, and the final key is obtained after basis comparison, data reconciliation and privacy amplification. With the proposed method, the effect of the noise in the fiber channel and environment on the QKD system can be reduced effectively.

Keywords: 03.67.Dd      42.50.Dv     
Received: 15 March 2010      Published: 25 August 2010
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  42.50.Dv (Quantum state engineering and measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/090301       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/090301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Chang-Hua
PEI Chang-Xing
QUAN Dong-Xiao
GAO Jing-Liang
CHEN Nan
YI Yun-Hui
[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India) p 175
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phy. 74 145
[3] Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J 1992 J. Cryptol. 5 3
[4] Chen J, Li Y, Wu G and Zeng H P 2007 Acta Phys. Sin. 56 5243 (in Chinese)
[5] Liu W T, Wu W, Liang L M, Li C Z and Yuan J M 2006 Chin. Phys. Lett. 23 287
[6] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[7] Zbinden H, Gautier J D, Gisin N, Huttner B, Muller A and Tittel W 1997 Electron. Lett. 33 586
[8] Muller A, Herzog T, Huttner B, Tittel W, Zbinden H and Gisin N 1997 Appl. Phys. Lett. 70 793
[9] Liang C, Fu D H, Liang B, Liao J, Wu L A, Yao D C and Lv S W 2001 Acta Phys. Sin. 50 1429 (in Chinese)
[10] Miao E L, Mo X F, Gui Y Z, Han Z F and Guo G C 2004 Acta Phys. Sin. 53 2123 (in Chinese)
[11] Mèrolla, J M, Mazurenko Y, Goedgebuer J P and Rhodes W T 1999 Phys. Rev. Lett. 82 1656
[12] Bloch M, McLaughlin S W, Merolla J M and Patois F 2007 Opt. Lett. 32 301
[13] Zhang T, Yin Z Q, Han Z F and Guo G C 2008 Opt. Commun. 281 4800
[14] Stucki D, Brunner N, Gisin N, Scarani V and Zbinden H 2005 Appl. Phys. Lett. 87 194108
[15] Debuisschert T and Boucher W 2004 Phys. Rev. A 70 042306
[16] Stucki D, Barreiro C, Fasel S, Gautier J D, Gay O, Gisin N, Thew R, Thoma Y, Trinkler P, Vannel F and Zbinden H 2009 Opt. Expr. 17 13326
[17] Ekert A K 1991 Phys. Rev. Lett. 67 661
[18] Huang X, Li S M and Wang A M 2007 Chin. Phys. Lett. 24 2479
[19] Inoue K, Waks E and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902
[20] Li M M, Wang F Q, Lu Y Q, Zhao F, Chen X, Liang R S and Liu S H 2006 Acta Phys. Sin. 55 4642 (in Chinese)
[21] Wang W Y, Wang C, Wen K and Long G L 2007 Chin. Phys. Lett. 24 1463
[22] Qi B 2006 Opt. Lett. 31 2795
[23] Donnelly T D and Grossman C H 1998 Am. J. Phys. 66 677
[24] Goltsman G, Korneev A and Divochiy A 2009 J. Mod. Opt. 56 1670
[25] Ma R L 2006 Quantum Cryptography Communications (Beijing: Science Press) (in Chinese)
[26] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[27] Wang X B 2005 Phys. Rev. Lett. 94 230503
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 090301
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 090301
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 090301
[4] CHEN Peng,QIAN Jun,CHEN Dong-Yuan,HU Zheng-Feng**,WANG Yu-Zhu**. Interference of a Narrowband Biphoton with Double Electromagnetically Induced Transparency in an N-Type System[J]. Chin. Phys. Lett., 2012, 29(4): 090301
[5] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 090301
[6] CAO Ming-Tao, HAN Liang, QI Yue-Rong, ZHANG Shou-Gang, GAO Hong, LI Fu-Li. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(3): 090301
[7] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 090301
[8] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 090301
[9] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 090301
[10] FANG Bin, LIU Bi-Heng, HUANG Yun-Feng**, SHI Bao-Sen, GUO Guang-Can . Spectrum Analysis of a Pulsed Photon Source Generated from Periodically Poled Lithium Niobate[J]. Chin. Phys. Lett., 2011, 28(7): 090301
[11] CHEN Peng, ZHOU Shu-Yu, XU Zhen, DUAN Ya-Fan, CUI Guo-Dong, HONG Tao, WANG Yu-Zhu** . Narrowband Biphoton Generation with Four-Wave Mixing in a Far-Detuning Three-Level System[J]. Chin. Phys. Lett., 2011, 28(7): 090301
[12] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 090301
[13] PENG Liang, HUANG Yun-Feng**, LI Li, LIU Bi-Heng, LI Chuan-Feng**, GUO Guang-Can . Experimental Demonstration of Largeness in Bipartite Entanglement Sudden Death[J]. Chin. Phys. Lett., 2011, 28(7): 090301
[14] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 090301
[15] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 090301
Viewed
Full text


Abstract