Chin. Phys. Lett.  2010, Vol. 27 Issue (9): 090203    DOI: 10.1088/0256-307X/27/9/090203
GENERAL |
An Application of a Generalized Version of the Dressing Method to Integration of a Variable-Coefficient Dirac System

SU Ting, WANG Zhi-Wei

Department of Mathematical and Physical Science, Henan Institute of Engineering, Zhengzhou 451191
Cite this article:   
SU Ting, WANG Zhi-Wei 2010 Chin. Phys. Lett. 27 090203
Download: PDF(387KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By using the generalized version of the dressing method, we consider a Dirac system. The types of nonlinear evolution equations discussed involve the integrable variable-coefficient Dirac equation and the defocusing nonlinear Schrödinger equation. As an application, their explicit solutions and Lax pairs are given.

Keywords: 02.30.Ik      02.30.Ri      04.60.Nc      05.45.Yn     
Received: 02 March 2010      Published: 25 August 2010
PACS:  02.30.Ik (Integrable systems)  
  02.30.Ri  
  04.60.Nc (Lattice and discrete methods)  
  05.45.Yn  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/9/090203       OR      https://cpl.iphy.ac.cn/Y2010/V27/I9/090203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SU Ting
WANG Zhi-Wei
[1] Zakharov V E and Shabat A B 1974 Funt. Anal. Appl. 8 226
[2] Zakharov V E and Shabat A B 1979 Funt. Anal. Appl. 8 13
[3] Chowdhury R and Basak S 1984 J. Phys. A 17 683
[4] Dye J M and Parker A 2000 J. Math. Phys. 41 2889
[5] Parker A 2001 Inverse Problems 17 885
[6] Dai H H and Jeffrey A 1989 Phys. Lett. A 139 369
[7] Jeffrey A and Dai H H 1990 Rendiconti. di Mathematica, Serie VII 10 439
[8] Frolov I S 1972 Sov. Math. Dokl. 13 1468
[9] Asano N and Kato Y 1984 J. Math. Phys. 25 570
[10] Du D L 1998 PhD Dissertation (Zhengzhou: Zhengzhou University)
[11] Hinton D B, Jordan A K, Klaus M and Shaw J K 1991 J. Math. Phys. 32 3015
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 090203
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 090203
[3] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 090203
[4] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 090203
[5] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 090203
[6] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 090203
[7] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 090203
[8] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 090203
[9] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 090203
[10] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 090203
[11] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 090203
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 090203
[13] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 090203
[14] Abbagari Souleymanou, **, Victor K. Kuetche, Thomas B. Bouetou, , Timoleon C. Kofane . Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System[J]. Chin. Phys. Lett., 2011, 28(12): 090203
[15] YU Fa-Jun. Conservation Laws and Self-Consistent Sources for a Super-Classical-Boussinesq Hierarchy[J]. Chin. Phys. Lett., 2011, 28(12): 090203
Viewed
Full text


Abstract