Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 088702    DOI: 10.1088/0256-307X/27/8/088702
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Spiking Regularity and Coherence in Complex Hodgkin-Huxley Neuron Networks

SUN Zhi-Qiang, XIE Ping, LI Wei, WANG Peng-Ye

Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
SUN Zhi-Qiang, XIE Ping, LI Wei et al  2010 Chin. Phys. Lett. 27 088702
Download: PDF(512KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the effects of the strength of coupling between neurons on the spiking regularity and coherence in a complex network with randomly connected Hodgkin-Huxley neurons driven by colored noise. It is found that for the given topology realization and colored noise correlation time, there exists an optimal strength of coupling, at which the spiking regularity of the network reaches the best level. Moreover, when the temporal regularity reaches the best level, the spatial coherence of the system has already increased to a relatively high level. In addition, for the given number of neurons and noise correlation time, the values of average regularity and spatial coherence at the optimal strength of coupling are nearly independent of the topology realization. Furthermore, there exists an optimal value of colored noise correlation time at which the spiking regularity can reach its best level. These results may be helpful for understanding of the real neuron world.

Keywords: 87.19.lm      05.45.Xt      87.18.Sn      05.40.-a     
Received: 19 April 2010      Published: 28 July 2010
PACS:  87.19.lm (Synchronization in the nervous system)  
  05.45.Xt (Synchronization; coupled oscillators)  
  87.18.Sn (Neural networks and synaptic communication)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/088702       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/088702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Zhi-Qiang
XIE Ping
LI Wei
WANG Peng-Ye
[1] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
[2] Strogatz S H 2001 Nature 410 268
[3] Gray C M, Konig P, Engel A K and Singer W 1989 Nature 338 334
[4] Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M and Reitboeck H 1988 J. Biol. Cybern. 60 121
[5] Zhang J Q, Hou Z H and Xin H W 2006 Chin. Phys. Lett. 23 2364
[6] Schmid G, Goychuk I and Hanggi P 2001 Europhys. Lett. 56 22
[7] Wang M, Hou Z and Xin H 2004 Chem. phys. chem. 5 1602
[8] Gong Y, Wang M, Hou Z and Xin H 2005 Chem. phys. chem..6 1042
[9] Li Q S and Gao Y 2007 Biophys. Chem. 130 41
[10] Hartline H K and Ratliff F 1958 J. Gen. Physiol. 41 1049
[11] Xie P, Dou S-X and Wang P-Y 2007 Biochim. Biophys. Acta. 1767 1418
[12] Jung P and Shuai J 2001 Europhysics Letters 56 29
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 088702
[2] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 088702
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 088702
[4] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 088702
[5] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 088702
[6] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 088702
[7] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 088702
[8] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 088702
[9] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 088702
[10] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 088702
[11] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 088702
[12] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 088702
[13] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 088702
[14] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 088702
[15] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 088702
Viewed
Full text


Abstract