Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 088401    DOI: 10.1088/0256-307X/27/8/088401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Numerical Study on Open-Circuit Voltage of Single Layer Organic Solar Cells with Schottky Contacts: Effects of Molecular Energy Levels, Temperature and Thickness

LI Rong-Hua1, MENG Wei-Min2, PENG Ying-Quan1,2, MA Chao-Zhu1, WANG Run-Sheng1, XIE Hong-Wei1, WANG Ying1

1Laboratory of Semiconductor Devices and Engineering, Lanzhou University, Lanzhou 730000 2Key Laboratory for Magnetism and Magnetic Materials (Ministry of Education), Lanzhou University, Lanzhou 730000
Cite this article:   
LI Rong-Hua, MENG Wei-Min, PENG Ying-Quan et al  2010 Chin. Phys. Lett. 27 088401
Download: PDF(489KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We numerically investigate the effects of the exciton generation rate G, temperature T, the active layer thickness d and the position of LUMO level EL related to the cathode work function Wc at a given energy gap on the open-circuit voltage Voc of single layer organic solar cells with Schottky contact. It is demonstrated that open-circuit voltage increases concomitantly with the decreasing cathode work function Wc for given anode work functions and exciton generation rates. In the case of given cathode and anode work functions, the open-circuit voltage first increases with the exciton generation rate and then reaches a saturation value, which equals to the built-in voltage. Additionally, it is worth noting that a significant improvement to Voc could be made by selecting an organic material which has a relative high LUMO level (low |EL| value). However, Voc decreases as the temperature increases, and the decreasing rate reduces with the enhancement of exciton generation rate. Our study also shows that it is of no benefit to improve the open-circuit voltage by increasing the device thickness because of an enhanced charge recombination in thicker devices.

Keywords: 84.60.Jt      71.20.Rv      72.80.Le     
Received: 23 November 2009      Published: 28 July 2010
PACS:  84.60.Jt (Photoelectric conversion)  
  71.20.Rv (Polymers and organic compounds)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/088401       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/088401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Rong-Hua
MENG Wei-Min
PENG Ying-Quan
MA Chao-Zhu
WANG Run-Sheng
XIE Hong-Wei
WANG Ying
[1] Christoph J B, Sariciftci N S and Hummelen J C 2001 Adv. Funct. Mater. 11 15
[2] Koster L J A, Mihailetchi V D and Blom P W M 2004 Appl. Phys. Lett. 88 052104
[3] Mandoc M M, Kooistra F B, Hummelen J C, Boer B and Blom P W M 2007 Appl. Phys. Lett. 91 263505
[4] Mandoc M M, Koster L J A and Blom P W M 2007 Appl. Phys. Lett. 90 133504
[5] Nakamura J, Murata K and Takahashi K 2005 Appl. Phys. Lett. 87 132105
[6] Koster L J A, Mihailetchi V D, Xie H and Blom P W M 2005 Appl. Phys. Lett. 87 203502
[7] Koster L J A, Mihailetchi V D and Blom P W M 2006 Appl. Phys. Lett. 88 093511
[8] Lenesa M, Koster L J A, Mihailetchi V D and Blom P W M 2006 Appl. Phys. Lett. 88 243502
[9] Mihailetchi V D, Blom P W M, Hummelen C and Rispens M T 2003 J. Appl. Phys. 94 6849
[10] Liu J, Shi Y and Yang Y 2001 Adv. Funct. Mater. 11 420
[11] Koster L J A, Smits E C P, Mihailetchi V D and Blom P W M 2005 Phys. Rev. B 72 085205
[12] Guo Z J, Xing H W, Wang Y H, Ma Y J, Liu D Q, Ma C Z, Peng Y Q and Li J W 2008 Optoelectron. Lett. 4 0410
[13] Mihailetchi V D, Koster L J A, Blom P W M, Ramos S, Malliaras G G, Carter S A and Bozano L 2005 Adv. Funct. Mater. 15 795
[14] Melzer C, Koop E J and Mihailetchi V D 2004 Adv. Funct. Mater. 14 865
[15] Malliaras G G, Salem J R, Brock P J and Blom P W M 1998 J. Appl. Phys. 84 1583
[16] Fan Y, Lunt R R and Forrest S R 2008 Appl. Phys. Lett. 92 053310
Related articles from Frontiers Journals
[1] WANG Li-Guo**, ZHANG Huai-Wu, TANG Xiao-Li, LI Yuan-Xun, ZHONG Zhi-Yong. Charge Transport and Electrical Properties in Poly(3-hexylthiophene) Polymer Layers[J]. Chin. Phys. Lett., 2012, 29(1): 088401
[2] XU Wei-Wei, HU Lin-Hua, LUO Xiang-Dong, LIU Pei-Sheng, DAI Song-Yuan**. The Electric Mechanism of Surface Pretreatments for Dye-Sensitized Solar Cells Based on Internal Equivalent Resistance Analysis[J]. Chin. Phys. Lett., 2012, 29(1): 088401
[3] ZHAO Hong-Xia, ZHAO Hui**, CHEN Yu-Guang . Dynamical Process of Dissociation of Excitons in Polymer Chains with Impurities[J]. Chin. Phys. Lett., 2011, 28(9): 088401
[4] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 088401
[5] LIU Wen, CHENG Jie, ZHANG Ming-Hua, LIU De-Sheng, ** . Zener Tunneling in One-Dimensional Organic Semiconductors at Finite Temperature[J]. Chin. Phys. Lett., 2011, 28(7): 088401
[6] LI Bi-Xin, CHEN Jiang-Shan, ZHAO Yong-Biao, MA Dong-Ge** . Frequency-Dependent Electrical Transport Properties of 4,4',4[J]. Chin. Phys. Lett., 2011, 28(5): 088401
[7] KONG Fang-Fang, LIU Cong-Cong, XU Jing-Kun**, JIANG Feng-Xing, LU Bao-Yang, YUE Rui-Rui, LIU Guo-Dong, WANG Jian-Min . Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea[J]. Chin. Phys. Lett., 2011, 28(3): 088401
[8] YANG Xiao-Guang, YANG Tao**, WANG Ke-Fan, GU Yong-Xian, JI Hai-Ming, XU Peng-Fei, NI Hai-Qiao, NIU Zhi-Chuan, WANG Xiao-Dong, CHEN Yan-Ling, WANG Zhan-Guo . Intermediate-Band Solar Cells Based on InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(3): 088401
[9] SHOU Chun-Hui, LUO Zhong-Yang**, WANG Tao, SHEN Wei-Dong, ROSENGARTEN Gary, WANG Cheng, NI Ming-Jiang, CEN Ke-Fa . A Dielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation[J]. Chin. Phys. Lett., 2011, 28(12): 088401
[10] JIANG Chun-Xia, YANG Xiao-Yan, ZHAO Kai, WU Xiao-Ming, YANG Li-Ying, CHENG Xiao-Man, WEI Jun, YIN Shou-Gen, ** . High Performance Polymer Field-Effect Transistors Based on Thermally Crosslinked Poly(3-hexylthiophene)[J]. Chin. Phys. Lett., 2011, 28(11): 088401
[11] DENG Qing-Wen**, WANG Xiao-Liang, , YANG Cui-Bai, XIAO Hong-Ling, WANG Cui-Mei, YIN Hai-Bo, HOU Qi-Feng, BI Yang, LI Jin-Min, WANG Zhan-Guo, HOU Xun . Computational Investigation of InxGa1−xN/InN Quantum-Dot Intermediate-Band Solar Cell[J]. Chin. Phys. Lett., 2011, 28(1): 088401
[12] LIANG Chun-Jun, ZOU Hui, HE Zhi-Qun, ZHANG Chun-Xiu, LI Dan, WANG Yong-Sheng. Polymer Light-Emitting Diode Using Conductive Polymer as the Anode Layer[J]. Chin. Phys. Lett., 2010, 27(9): 088401
[13] QIAO Xian-Feng, CHEN Jiang-Shan, MA Dong-Ge. Comparative Study on Hole Transport in N,N'-bis(naphthalen-1-yl)-N,N'- bis(pheny) Benzidine and 4,4',4''-tri(N-carbazolyl)triphenylamine[J]. Chin. Phys. Lett., 2010, 27(8): 088401
[14] LI Zhong-Liang, WU Zhao-Xin, JIAO Bo, MAO Gui-Lin, HOU Xun. Capacitance of Organic Schottky Diodes Based on Copper Phthalocyanine (CuPc)[J]. Chin. Phys. Lett., 2010, 27(6): 088401
[15] LU Bao-Yang, LIU Cong-Cong, LU Shan, XU Jing-Kun, JIANG Feng-Xing, LI Yu-Zhen, ZHANG Zhuo. Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms[J]. Chin. Phys. Lett., 2010, 27(5): 088401
Viewed
Full text


Abstract