CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Molecular Dynamical Simulations on a-C:H Film Growth from C and H Atomic Flux: Effect of Incident Energy |
QUAN Wei-Long1,2, LI Hong-Xuan1, ZHAO Fei1, JI Li1, DU Wen1, ZHOU Hui-Di1, CHEN Jian-Min1 |
1State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 2School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou 730070 |
|
Cite this article: |
QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei et al 2010 Chin. Phys. Lett. 27 088102 |
|
|
Abstract Molecular dynamical simulation is carried out to investigate the effects of the incident energy on a-C:H film growth from C and H atomic flux. Our simulations show that the film growth at low incident energy (1 eV) is dominated by the adsorption of H and C atoms. At moderate incident energy (10 and 20 eV), the abstraction reaction of incident H atoms with H atoms adsorbed at the surface becomes important. At high incident energy (30 and 40 eV), the a-C:H film growth is a two-step process: one is the adsorption and the shallow implantation of C atoms, and the other is the deep implantation of H atoms.
|
Keywords:
81.15.Hi
83.10.Rs
61.43.Bn
|
|
Received: 25 January 2010
Published: 28 July 2010
|
|
PACS: |
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
83.10.Rs
|
(Computer simulation of molecular and particle dynamics)
|
|
61.43.Bn
|
(Structural modeling: serial-addition models, computer simulation)
|
|
|
|
|
[1] Bai S Y, Tang Z A, Huang Z X, Yu J, Wang J and Liu G C 2009 Chin. Phys. Lett. 26 076601 [2] Ji L, Li H X, Zhao F, Quan W L, Chen J M and Zhou H D 2009 Appl. Surf. Sci. 255 8409 [3] Dai H Y, Wang L W, Jiang H and Huang N K 2007 Chin. Phys. Lett. 24 2122 [4] Silinskas M, Grigonis A, Kulikauskas V and Manika I 2008 Thin Solid Films 516 1683 [5] Erdemir A and Eryilmaz O L 2007 Superlubricity 253 [6] Fontaine J and Donnet C 2007 Superlubricity 273 [7] Hainsworth S V and Uhrue N J 2007 Int. Mater. Rev. 52 153 [8] Robertson J 2002 Mater. Sci. Eng. R 37 129 [9] Andersson J, Erck R A and Erdemir A 2003 Wear 254 1070 [10] Yoshizawa N, Yamada Y and Shiraishi M 1993 Carbon 31 1049 [11] Guo C T and Chen P C 2007 Appl. Surf. Sci. 253 9191 [12] Miyagawa Y, Nakao S, Ikeyama M and Miyagawa S 2001 Surf. Coat. Technol. 136 122 [13] Miyagawa Y, Nakadate H, Tanaka M and Miyagawa S 2002 Surf. Coat. Technol. 156 87 [14] Miyagawa Y, Nakadate H, Ikeyama M, Nakao S and Miyagawa S 2003 Diamond Relat. Mater. 12 927 [15] Neyts E, Bogaerts A and van de Sanden M C M 2006 Appl. Phys. Lett. 88 141922 [16] Neyts E, Bogaerts A and van de Sanden M C M 2006 J. Appl. Phys. 99 014902 [17] Neyts E, Bogaerts A and van de Sanden M C M 2007 J. Phys: Conf. Series 86 012020 [18] Neyts E, Eckert M and Bogaerts A 2007 Chem. Vap. Deposition 13 312 [19] Quan W L, Li H X, Zhao F, Ji L, Du W, Zhou H D and Chen J M 2010 Phys. Lett. A 374 2150 [20] Berendsen H J C, Postma J P M, Vangunsteren W F, Dinola A and Haark J R 1984 J. Chem. Phys. 81 3684 [21] Hu Y H and Sinnott S B 2004 J. Comput. Phys. 200 251 [22] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter. 14 783 [23] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Oxford University) p 82
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|