CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Temperature- and Frequency-Dependent Dielectric Properties of La1.5Sr0.5NiO4-δ |
MA Yong-Chang1,2, ZHANG Jian-Zhu1, ZHAO Jie3, LIU Qing-Suo1 |
1School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 2Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin University of Technology, Tianjin 300384 3Tianjin Key Lab for Photoelectric Materials and Devices, Tianjin 300384 |
|
Cite this article: |
MA Yong-Chang, ZHANG Jian-Zhu, ZHAO Jie et al 2010 Chin. Phys. Lett. 27 087701 |
|
|
Abstract
We report the temperature-dependent resistivity and dielectric function (1 kHz~3 MHz) of a charge ordering system La1.5Sr0.5NiO4-δ The primary data of ac impedance was measured by a four-terminal pair arrangement. Above 180 K, the resistivity is independent of frequency. At lower temperatures, the dielectric function could not be fitted by a Debye model with a single relaxation time, it should have a distribution. At T=130 K, there is a sudden increase in the ρ-T relation, meanwhile an anomaly dielectric response occurs on the temperature dependant dielectric spectrum in the whole measured frequency range, in which the dielectric constant has a high value even at high frequency region. Our analysis suggests that the current system would be more consistent with the Zener polaron model.
|
Keywords:
77.84.Bw
77.22.Ch
72.20.Jv
|
|
Received: 09 December 2009
Published: 28 July 2010
|
|
PACS: |
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
77.22.Ch
|
(Permittivity (dielectric function))
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
|
|
|
[1] Subramanian M A et al 2000 J. Solid State Chem. 151 323 [2] Homes C C et al 2001 Science 293 673 [3] Krohns S et al 2009 Appl. Phys. Lett. 91 122903 [4] Homes C C et al 2003 Phys. Rev. B 67 092106 [5] Tran Dang Thanh and Le Van Hong 2009 J. Phys.: Conf. Series 187 012085 [6] Lunkenheimer P et al 2002 Phys. Rev. B 66 052105 [7] Imada M et al 1998 Rev. Mod. Phys. 70 1039 [8] Tranquada J M et al 1995 Phys. Rev. B 52 3581 Tranquada J M et al 1996 Phys. Rev. B 54 12318 [9] Sachan V et al 1995 Phys. Rev. B 51 12742 [10] Lee S H and Cheong S W 1997 Phys. Rev. Lett. 79 2514 [11] Chen C H et al 1993 Phys. Rev. Lett. 71 2461 [12] Yoshizawa H et al 2000 Phys. Rev. B 61 R854 [13] Kajimoto et al 2003 Phys. Rev. B 67 014511 [14] Rivas J et al 2004 Appl. Phys. Lett. 85 6224 [15] Wang Z and LI Y X 2009 Chin. Phys. Lett. 26 117701 [16] Zhang H J, Zhang X P and Zhao Y G 2009 Chin. Phys. Lett. 26 077303 [17] Daoud-Aladine A et al 2002 Phys. Rev. Lett. 89 97205 [18] Cheong S W et al 1994 Phys. Rev. B 49 7088 [19] Sidebottom D L 2009 Rev. Mod. Phys. 81 999 [20] Silvana M et al 2004 Phys. Rev. B 69 174433 [21] Cava R J et al 1984 Phys. Rev. B 30 3228 [22] Kivelson S A et al 1998 Nature 393 550 [23] Littlewood P B 1987 Phys. Rev. B 36 3108 [24] Timothy B Adams et al 2006 Phys. Rev. B 73 094124 [25] Jeroen van den Brink and Khomskii D I 2008 J. Phys.: Condens. Matter 20 434217 [26] Dmitry V E et al 2004 Nature Mater. 3 853 [27] Daoud-Aladine A et al 2008 Phys. Rev. Lett. 101 166404
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|