Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 087502    DOI: 10.1088/0256-307X/27/8/087502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetic Properties of Spin-Ladder Compound Sr14(Cu1-yFey)24O41

HU Ni1,2, LU Zhi-Hong3, CHENG Li1, XIONG Rui1, SHI Jing1,4

1Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072 2School of Science, Hubei University of Technology, Wuhan 430068 3School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430072 4International Center of Materials Physics, Chinese Academy of Sciences, Shenyang 110016
Cite this article:   
HU Ni, LU Zhi-Hong, CHENG Li et al  2010 Chin. Phys. Lett. 27 087502
Download: PDF(629KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Magnetic properties of spin-ladder compounds Sr14(Cu1-yFey)24O41 (0 ≤ y ≤ 0.05) are investigated in the temperature range from 10 to 300 K. The result reveals that all the samples exhibit magnetic crossover behavior in the paramagnetic range, and Fe3+ doping can efficiently increase the susceptibility due to the large moment of Fe3+. Both the observations are consistent with our previous investigation on transport behaviors, indicating the strong correlation between the magnetism and transport behaviors. The spin gap is evidenced in all the samples, and strengthens as Fe3+ doping level increases, which can be associated with the antiferromagnetic interaction between Fe3+ and Cu cations.

Keywords: 75.30.Cr      75.25.+z      75.50.Ee     
Received: 16 November 2009      Published: 28 July 2010
PACS:  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.25.+z  
  75.50.Ee (Antiferromagnetics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/087502       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/087502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Ni
LU Zhi-Hong
CHENG Li
XIONG Rui
SHI Jing
[1] Uehara M, Nagata T, Akimitsu J, Takahashi H, Mori N and Kinoshita K 1996 J. Phys. Soc. Jpn. 65 2764
[2] Nagata T, Uehara M, Akimitsu J, Motoyama N, Eisaki H, Uchida S, Takahashi H, Nakanishi T and Mori N 1998 Phys. Rev. Lett. 81 1090
[3] Carter S A, Batlogg B, Cava R J, Krajewski J J, Peck W F and Rice T M 1996 Phys. Rev. Lett. 77 1378
[4] Hiroi Z, Amelinckx S, Van Tendeloo G and Kobayashi N 1996 Phys. Rev. B 54 15849
[5] Motoyama N, Osafune T, Kakeshita T, Eisaki H and Uchida S 1997 Phys. Rev. B 55 R3386
[6] Imai T, Thurber K R, Shen K M, Hunt A W and Chou F C 1998 Phys. Rev. Lett. 81 220
[7] Takigawa M, Motoyama N, Eisaki H and Uchida S 1998 Phys. Rev. B 57 1124
[8] Eccleston R S, Uehara M, Akimitsu J, Eisaki H, Motoyama N and Uchida S 1998 Phys. Rev. Lett. 81 1702
[9] Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759
[10] Ammerahl U, Buchner B, Colonescu L, Gross R and Revolevschi A 2000 Phys. Rev. B 62 8630
[11] Kataev V, Choi K Y, Gruninger M, Ammerhal U, Buchner B, Freimuth A and Recovleschi A 2001 Phys. Rev. B 64 104422
[12] Dagotto J E, Riera J and Scalapino D 1992 Phys. Rev. B 45 5744
[13] McCarran E M, Subramanian M A, Calabrese J C and Harlow L 1988 Mater. Res. Bull. 23 1355
[14] Cox D E, Iglesias T, Hirota K, Shirane G, Matsuda M, Motoyama N, Eisaki H and Uchida S 1998 Phys. Rev. B 57 10750
[15] Magishi K, Matsumoto S, Kitaoka Y, Ishida K, Asayama K, Uehara M, Nagata T and Akimitsu J 1998 Phys. Rev. B 57 11533
[16] Kumagai K, Tsuji S, Kato M and Koike Y 1997 Phys. Rev. Lett. 78 1992
[17] Eccleston R S, Azuma M and Takano M 1996 Phys. Rev. B 53 14721
[18] Matsuda M, Katsumata K, Eisaki H, Motoyama N, Uchida S, Shapiro S M and Shirane G 1996 Phys. Rev. B 54 12199
[19] Kato M, Shiota K and Koike Y 1996 Physica C 258 284
[20] Dagotto E 1999 Rep. Prog. Phys. 62 1525
[21] Chen L, Chen H Y, Wang Q H and Ni Y M 2001 Phys. Rev. B 64 104517
[22] Kudo K, Koike Y, Maki K, Tsuji S and Kumagai K 2001 J. Phys. Chem. Solids 62 361
[23] Akimitsu J, Uehara M, Nagata T, Matsumoto S, Kitaoka Y, Takahashi H and Mori N 1996 Physica C 263 475
[24] Uehara M, Ogawa M and Akimitsu J 1995 Physica C 255 193
[25] Lin Y, Xiong R, Hu N, Wang L L, Yu Z X, Tang W F and Shi J 2007 Physica B 400 93
[26] Sakai H, Ito K, Kumai R and Tokura Y 2007 Phys. Rev. B 76 155112
[27] Hu N, Xie H, Wang L L, Lin Y, Xiong R, Yu Z X, Tang W F and Shi J 2006 Chin. Phys. Soc 55 3480 (in Chinese).
[28] Adachi T, Shiota K, Kato M, Noji T and Koike Y 1998 Solid State Commun. 105 639
[29] Matsuda M and Katsumata K 1996 Phys. Rev. B 53 12201
Related articles from Frontiers Journals
[1] Osman Murat Ozkendir**. Chromium Substitution Effect on the Magnetic Structure of Iron Oxides[J]. Chin. Phys. Lett., 2012, 29(5): 087502
[2] CHEN Feng-Liang,ZHOU Shi-Ming**. Magnetoresistance Effect in Antiferromagnet-Based Nanogranular Films[J]. Chin. Phys. Lett., 2012, 29(4): 087502
[3] LIU Zhao-Sen**, Sechovský, Vladimir, Divi&#, Martin . Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model[J]. Chin. Phys. Lett., 2011, 28(6): 087502
[4] CHANG Hong, **, ZHAO Yong-Gang . Enhanced Magnetic and Ferroelectric Properties and Current-Voltage Hysteresis by Addition of La and Ti to BiFeO3 on 0.7%Nb−SrTiO3[J]. Chin. Phys. Lett., 2011, 28(6): 087502
[5] QI Jian-Qing, WANG Lei, DAI Xi. Antiferromagnetism of Repulsively Interacting Fermions in a Harmonic Trap[J]. Chin. Phys. Lett., 2010, 27(8): 087502
[6] LIU Yue-Feng, WANG Bei, ZHENG Hai-Wu, LIU Xiang-Yang, GU Yu-Zong, ZHANG Wei-Feng. Temperature-Dependent Raman Spectrum of Hexagonal YMnO3 Films Synthesized by Chemical Solution Method[J]. Chin. Phys. Lett., 2010, 27(5): 087502
[7] Ugur Topal**. Evolution of Structural and Magnetic Properties of BaFe12O19 with B2O3 Addition[J]. Chin. Phys. Lett., 2010, 27(11): 087502
[8] LIU Zhao-Sen, Divis Martin, Sechovsky Vladimir. The Magnetic Properties of TbNi2B2C Investigated with a Two-Sublattice Model[J]. Chin. Phys. Lett., 2009, 26(6): 087502
[9] DENG Jiang-Xia, YAN Shi-Shen, MEI Liang-Mo, J. P. Liu, B. Altuncevahir, V. Chakka, WANG Yong, ZHANG Ze, SUN Xiang-Cheng, J. Lian, K. Sun. Magnetic Properties and Antiferromagnetic Coupling in Inhomogeneous Zn1-xFexO Magnetic Semiconductor[J]. Chin. Phys. Lett., 2009, 26(2): 087502
[10] LI An-Kang, LU Jun-Zhe, MA Lei. Bond-Alternating Antiferromagnetic S=1/2 Heisenberg Ladder with Ferromagnetic Diagonal Coupling[J]. Chin. Phys. Lett., 2009, 26(12): 087502
[11] LIU Zhao-Sen, Divis Martin, Sechovský, Vladimir. Magnetic Orderings and Néel Temperature of TbNi2B2C[J]. Chin. Phys. Lett., 2009, 26(10): 087502
[12] DONG Zhan-Hai. 120° Ordered Phase of Triangular Lattice Antiferromagnetic Heisenberg Model with Long Range Couplings[J]. Chin. Phys. Lett., 2009, 26(10): 087502
[13] ZHENG Ping, LUO Jian-Lin, WU Dong, SU Shao-Kui, LIU Guang-Tong, MAYong-Chang, CHEN Zhao-Jia. Anisotropic Applied Field Dependency of Two Successive Magnetic Transitions in LiCu2O2[J]. Chin. Phys. Lett., 2008, 25(9): 087502
[14] REN Jun-Feng, XIU Ming-Xia. Effect of Carrier Differences on Spin Polarized Injection into Organic and Inorganic Semiconductors[J]. Chin. Phys. Lett., 2008, 25(7): 087502
[15] R. Masrour, M. Hamedoun, A. Benyoussef, A. Hourmatallah, K. Bouslykhane, N. Benzakour. Effect of Co-Substitution on Magnetic Properties in Spinels GeNi2O4 Systems[J]. Chin. Phys. Lett., 2008, 25(11): 087502
Viewed
Full text


Abstract