Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 087403    DOI: 10.1088/0256-307X/27/8/087403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Decomposition of Gauge Potential in Ginzburg-Landau Theory

LI Jian-Feng1, JIANG Yu1, SUN Wei-Min1,2, WANG Fan1,2, ZONG Hong-Shi1,2

1Department of Physics, Nanjing University, Nanjing 210093 2Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093
Cite this article:   
LI Jian-Feng, JIANG Yu, SUN Wei-Min et al  2010 Chin. Phys. Lett. 27 087403
Download: PDF(330KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, Liu et al. proposed a so-called extended Anderson-Higgs mechanism by studying the (2+1)-dimensional Ginzburg-Landau model in the pseudogap region of high-Tc superconductor (Phys. Rev. B 65 (2002) 132513). We revisit this problem based on a general decomposition of the U(1) gauge potential. Using the bulk superconductor and superconduct ring as examples, we obtain a simpler expression for the extended Anderson-Higgs mechanism. In the former case we indicate that all the phase field can always be "eaten up'' by the pure gauge term A||. In the latter case, we decompose the phase field as θ(x)=θ1(x)+θ2(x) and find that only the phase field θ1 connected with Anderson-Higgs mechanism can be canceled by the pure-gauge term A||. On the other hand, the remaining phase field θ2 connected with A^is multi-valued, which can induce new physical effects such as A-B effect and flux quantization. It is natural to conclude that there is no longitudinal phase fluctuation effect in high-temperature superconductors since longitudinal phase \theta1 is connected with pure-gauge term.

Keywords: 74.20.De     
Received: 26 April 2010      Published: 28 July 2010
PACS:  74.20.De (Phenomenological theories (two-fluid, Ginzburg-Landau, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/087403       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/087403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jian-Feng
JIANG Yu
SUN Wei-Min
WANG Fan
ZONG Hong-Shi
[1] Anderson P W 1963 Phys. Rev. 130 439
[2] Higgs P W 1964 Phys. Lett. 12 132
[3] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[4] Kosterlitz J M and Thouless D J 1973 J. Phys. C 662 1181
[5] Liu G Z and Cheng G 2002 Phys. Rev. B 65 132513
[6] Nieh H T, Su G and Zhao B H 1995 Phys. Rev. B 51 3760
[7] Emery V J and Kivelson S A 1995 Nature 374 434
[8] Franz M and Millis A J 1998 Phys. Rev. B 58 14572
Related articles from Frontiers Journals
[1] HE Li, HU Xiang, YIN Lan, XU Xiao-Lin, GUO Jian-Dong, LI Chuan-Yi, YIN Dao-Le. Extended Power Law and Hall Anomaly of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2009, 26(3): 087403
[2] HU Xiang, HE Li, NING Zhen-Hua, CHEN Kai-Xuan, YIN Lan, LU Guo, XU Xiao-Lin, GUO Jian-Dong, WANG Fu-Ren, LI Chuan-Yi, YIN Dao-Le. Critical Scaling of Extended Power Law I - V Isotherms near Vortex Glass Transition[J]. Chin. Phys. Lett., 2006, 23(12): 087403
[3] NING Zhen-Hua, CHEN Kai-Xuan, YIN Lan, LU Guo, XU Xiao-Lin, GUO Jian-Dong, WANG Fu-Ren, YIN Dao-Le. Extended Power Law Nonlinear Response and Amplitude-Dependent ac Susceptibility of High-Tc Superconductors[J]. Chin. Phys. Lett., 2004, 21(7): 087403
[4] TONG Zhao-Yang, KUANG Le-Man. Broadcasting of Entanglement in Three-Particle Greenberger-Horne-Zeilinger State via Quantum Copying[J]. Chin. Phys. Lett., 2000, 17(7): 087403
[5] HAN Qiang, ZHANG Li-yuan. Ginzburg-Landau Equations for (d+s)-Wave Superconductors in a Non-Fermi Liquid[J]. Chin. Phys. Lett., 1998, 15(10): 087403
Viewed
Full text


Abstract