Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 087301    DOI: 10.1088/0256-307X/27/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Discrete Charge Storage Nonvolatile Memory Based on Si Nanocrystals with Nitridation Treatment

ZHANG Xian-Gao1, CHEN Kun-Ji1, FANG Zhong-Hui1, QIAN Xin-Ye1, LIU Guang-Yuan1, JIANG Xiao-Fan1, MA Zhong-Yuan1, XU Jun1, HUANG Xin-Fan1, JI Jian-Xin2, HE Fei2, SONG Kuang-Bao2, ZHANG Jun2, WAN Hui2, WANG Rong-Hua2

1National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 2Wuxi China Resources Huajing Micro Electronics Co. Ltd., Wuxi 214061
Cite this article:   
ZHANG Xian-Gao, CHEN Kun-Ji, FANG Zhong-Hui et al  2010 Chin. Phys. Lett. 27 087301
Download: PDF(1352KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A nonvolatile memory device with nitrided Si nanocrystals embedded in a floating gate was fabricated. The uniform Si nanocrystals with high density (3×1011 cm-2) were deposited on ultra-thin tunnel oxide layer (~ 3 nm) and followed by a nitridation treatment in ammonia to form a thin silicon nitride layer on the surface of nanocrystals. A memory window of 2.4 V was obtained and it would be larger than 1.3 V after ten years from the extrapolated retention data. The results can be explained by the nitrogen passivation of the surface traps of Si nanocrystals, which slows the charge loss rate.

Keywords: 73.63.Kv      61.46.Hk      68.65.Hb     
Received: 24 February 2010      Published: 28 July 2010
PACS:  73.63.Kv (Quantum dots)  
  61.46.Hk (Nanocrystals)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/087301       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/087301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xian-Gao
CHEN Kun-Ji
FANG Zhong-Hui
QIAN Xin-Ye
LIU Guang-Yuan
JIANG Xiao-Fan
MA Zhong-Yuan
XU Jun
HUANG Xin-Fan
JI Jian-Xin
HE Fei
SONG Kuang-Bao
ZHANG Jun
WAN Hui
WANG Rong-Hua
[1] Lee J D, Hur S H and Choi J D 2003 IEEE Electron Device Lett. 23 264
[2] DeBlauwe J 2002 IEEE Trans. Nanotechnol. 1 72
[3] Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbe E F and Chan K 1996 Appl. Phys. Lett. 68 1377
[4] Huang J et al 2009 Chin. Phys. Lett. 26 037301
[5] Mao P et al 2009 Chin. Phys. Lett. 26 056104
[6] Maikap S, Rahaman S Z and Tien T C 2008 Nanotechnology 19 435202
[7] Liao Z W et al 2009 Chin. Phys. Lett. 26 087303
[8] Wu L C, Chen K J, Wang J M and Huang X F 2006 Appl. Phys. Lett. 89 112118
[9] Wang J M et al 2007 J. Appl. Phys. 101 014325
[10] She M and King T J 2003 IEEE Trans. Electron. Devices 50 1934
[11] Chen J H et al 2007 Jpn. J. Appl. Phys. 46 6586
[12] Park N M, Choi S H and Park S J 2002 Appl. Phys. Lett. 81 1092
[13] Khoury M, Rack M J, Gunther A and Ferry D K 1999 Appl. Phys. Lett. 74 1576
[14] Shen S J, Lin C J and Hsu C H 1998 Jpn. J. Appl. Phys. 37 L1517
[15] Ng C Y, Chen T P, Yang A, Yang J B, Ding L, Li C M, Du A and Trigg A 2006 IEEE Trans. Electron. Devices 53 663
Related articles from Frontiers Journals
[1] PENG Juan**,LI Shu-Shen. The Electronic Structure of Coupled Semiconductor Quantum Dots Arranged as a Graphene Hexagonal Lattice under a Magnetic Field[J]. Chin. Phys. Lett., 2012, 29(4): 087301
[2] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 087301
[3] SIB KRISHNA Ghoshal**, M. R. Sahar, M. S. Rohani . Dielectric Function of Silicon Nanoclusters: Role of Hydrogen[J]. Chin. Phys. Lett., 2011, 28(9): 087301
[4] TIAN Peng, HUANG Li-Rong**, YUAN Xiu-Hua, HUANG De-Xiu . Effects of an InGaAs Cap Layer on the Optical Properties of InAs Quantum Dot Molecules[J]. Chin. Phys. Lett., 2011, 28(6): 087301
[5] WANG Lai**, ZHAO Wei, HAO Zhi-Biao, LUO Yi . Photocatalysis of InGaN Nanodots Responsive to Visible Light[J]. Chin. Phys. Lett., 2011, 28(5): 087301
[6] GUO Jing-Wei**, HUANG Hui, REN Xiao-Min, YAN Xin, CAI Shi-Wei, GUO Xin, HUANG Yong-Qing, WANG Qi, ZHANG Xia, WANG Wei . Growth of Zinc Blende GaAs/AlGaAs Radial Heterostructure Nanowires by a Two-Temperature Process[J]. Chin. Phys. Lett., 2011, 28(3): 087301
[7] Murtaza Saleem**, Saadat A. Siddiqi, Shahid Atiq, M. Sabieh Anwar . Structural and Magnetic Studies of Zn0.95Co0.05O and Zn0.90Co0.05Al0.05O[J]. Chin. Phys. Lett., 2011, 28(11): 087301
[8] HUANG Qing-Song, DONG Dong-Qing, XU Jian-Ping, ZHANG Xiao-Song, ZHANG Hong-Min, LI Lan. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization[J]. Chin. Phys. Lett., 2010, 27(5): 087301
[9] CHEN Jia-Feng, WU Shao-Quan, HOU Tao, ZHAO Guo-Ping. Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(4): 087301
[10] YE Xian, HUANG Hui, REN Xiao-Min, YANG Yi-Su, GUO Jing-Wei, HUANG Yong-Qing, WANG Qi. Growth of Pure Zinc Blende GaAs Nanowires: Effect of Size and Density of Au Nanoparticles[J]. Chin. Phys. Lett., 2010, 27(4): 087301
[11] TANG Guang-Hua, XU Bo, JIANG Li-Wen, KONG Jin-Xia, KONG Ning, LIANG De-Chun, LIANG Ping, YE Xiao-Ling, JIN Peng, LIU Feng-Qi, CHEN Yong-Hai, WANG Zhan-Guo. A Photovoltaic InAs Quantum-Dot Infrared Photodetector[J]. Chin. Phys. Lett., 2010, 27(4): 087301
[12] ZHOU Xing-Fei, CUI Cheng-Yi, ZHANG Jin-Hai, LIU Jian-Hua, LIU Jing-Song. Comparative Study on Polarization of DNA and CdSe Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(3): 087301
[13] DONG Ping, ZHANG Gang, CAO Zhuo-Liang. Entanglement Purification for Mixed Entangled Quantum Dot States via Superconducing Transmission Line Resonators[J]. Chin. Phys. Lett., 2010, 27(3): 087301
[14] LI Zhan-Guo, LIU Guo-Jun**, LI Lin, FENG Ming, LI Mei, LU Peng, ZOU Yong-Gang, LI Lian-He, GAO Xin. Strain-Engineered Low-Density InAs Bilayer Quantum Dots for Single Photon Emission[J]. Chin. Phys. Lett., 2010, 27(12): 087301
[15] WANG Peng-Fei, XIONG Yong-Hua, WANG Hai-Li, HUANG She-Song, NI Hai-Qiao, XU Ying-Qiang, HE Zhen-Hong, NIU Zhi-Chuan. GaAs-Based Metamorphic Long-Wavelength InAs Quantum Dots Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2009, 26(6): 087301
Viewed
Full text


Abstract