Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 085201    DOI: 10.1088/0256-307X/27/8/085201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
A Comparison Study of Three CESE Schemes in MHD Simulation

JI Zhen1,2, ZHOU Yu-Fen1

1State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 2Graduate School, Chinese Academy of Sciences, Beijing 100049
Cite this article:   
JI Zhen, ZHOU Yu-Fen 2010 Chin. Phys. Lett. 27 085201
Download: PDF(494KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The space-time conservation element and solution element (CESE) scheme is a new second order numerical scheme based on the concept of space-time conservation integration. In order to further overcome excessive numerical damping due to small Courant-Friedrichs-Lewy (CFL) number and to obtain a high quality solution, a Courant number insensitive (CNIS) scheme and a high-order scheme have been proposed by Chang et al. for fluid mechanics problems recently. In this study, to explore the potential capability of applications of the CNIS CESE scheme and the high-order CESE scheme to magnetohydrodynamics (MHD) equations, several benchmark MHD problems are calculated in one and two dimensions: (i) Brio and Wu's shock tube, (ii) Dai and Woodward's case, (iii) the Orszag-Tang vortex problem, (iv) the Riemann problem. The numerical results just prove that the CNIS scheme is more accurate and can keep the divergence free condition of the magnetic field, even if the CFL number is «1. Meanwhile, the tests show that the high order CESE scheme possesses the ability to solve MHD problems but is sensitive to the Courant number.

Keywords: 52.30.Cv      95.30.Qd     
Received: 28 January 2010      Published: 28 July 2010
PACS:  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
  95.30.Qd (Magnetohydrodynamics and plasmas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/085201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/085201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JI Zhen
ZHOU Yu-Fen
[1] Chang S C 1995 J. Comput. Phys. 119 295
[2] Chang S C, Wang X Y and Chow C Y 1998 NASA TM-1998-208843
[3] Chang S C, Wang X Y and Chow C Y 1999 J. Comput. Phys. 156 89
[4] Zhang Z C and Yu S T 1999 AIAA Paper 1999-0904
[5] Zhang Z C, Yu S T and Chang S C 2002 J. Comput. Phys. 175 168
[6] Feng X S, Hu Y Q and Wei F S 2006 Sol. Phys. 239 235
[7] Feng X S, Zhou Y F and Wu S T 2007 Astrophys. J. 655 1110
[8] Zhou Y F, Feng X S and Wu S T 2008 Chin. Phys. Lett. 25 790
[9] Chang S C 2002 AIAA Paper 2002-3890
[10] Yen Joseph C and Wagner Donald A 2005 AIAA Paper 2005-2820
[11] Chang S C 2007 AIAA Paper 2007-5820
[12] Chang S C 2008 NASA TM-2008-215138
[13] Liu K X and Wang J T 2004 Chin. Phys. Lett. 21 2085
[14] Zhang D L, Wang J T and Wang G 2009 Chin. J. Comput. Phys. 26 211
[15] Zhang M J, Henry Lin S C and John Yu S T 2002 AIAA Paper 2002-3888
[16] Jiang G S, Wu C C 1999 J. Comput. Phys. 150 561
[17] Zhang M J, John Yu S T and Henry Lin S C el at 2006 J. Comput. Phys. 214 599
[18] Xiong M, Peng Z, Hu Y Q, Zheng H N 2009 Chin. Phys. Lett. 26 015202
[19] Zheng H N, Zhang Y Y and Wang S et al 2006 Chin. Phys. Lett. 23 399
Related articles from Frontiers Journals
[1] LI Ming-Jun**, CHEN Liang . Magnetic Fluid Flows in Porous Media*[J]. Chin. Phys. Lett., 2011, 28(8): 085201
[2] JI Zhen, **, ZHOU Yu-Fen, HOU Tian-Xiang . A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation[J]. Chin. Phys. Lett., 2011, 28(7): 085201
[3] G. A. Hoshoudy . Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(12): 085201
[4] FANG Tie-Gang, ZHANG Ji, YAO Shan-Shan. Slip Magnetohydrodynamic Viscous Flow over a Permeable Shrinking Sheet[J]. Chin. Phys. Lett., 2010, 27(12): 085201
[5] MA Zhi-Wei, LU Xing-Qiang. An Island Coalescence Scenario for Near-Earth Current Disruption in the Magnetotail[J]. Chin. Phys. Lett., 2009, 26(8): 085201
[6] M. Khayrul Hasan, M. Hossain Ali. Dispersion Relations for Isothermal Plasma around the Horizon of Reissner-Nordström-de Sitter Black Hole[J]. Chin. Phys. Lett., 2009, 26(10): 085201
[7] XIONG Ming, PENG Zhong, HU You-Qiu, ZHENG Hui-Nan. Response of the Earth's Magnetosphere and Ionosphere to Solar Wind Driver and Ionosphere Load: Results of Global MHD Simulations[J]. Chin. Phys. Lett., 2009, 26(1): 085201
[8] SHI Bing-Ren, LI Ji-Quan. Magneto-Hydrodynamic High-n Ballooning Mode Instability of an Analytic Axi-Symmetric Toroidal Equilibrium with Arbitrary Aspect Ratio[J]. Chin. Phys. Lett., 2007, 24(2): 085201
[9] NING Cheng, DING Ning, LIU Quan, YANG Zhen-Hua, FAN Wen-Bin, ZHANG Yang. Simulation of Z-Pinch Processes of Nested Tungsten Wire-Array on Angara-5-1 Facility[J]. Chin. Phys. Lett., 2006, 23(7): 085201
[10] ZHENG Hui-Nan, ZHANG Yuan-Yuan, WANG Shui, WANG Chuan-Bing, LI Yi. Propagation of Fast Magnetoacoustic Waves in Stratified Solar Atmosphere[J]. Chin. Phys. Lett., 2006, 23(2): 085201
[11] CHEN Shi-Bo, ZHANG Li,. One-Dimensional Electric Field Structure of an Outer Gap Accelerator[J]. Chin. Phys. Lett., 2006, 23(10): 085201
[12] FENG Shi-De, DONG Ping, ZHONG Lin-Hao. A Lattice Boltzmann Model for Two-Dimensional Magnetohydrodynamics[J]. Chin. Phys. Lett., 2006, 23(10): 085201
[13] MAO Jian-Shan, LUO Jia-Rong, SHEN Biao, ZHAO Jun-Yu, HU Li-Qun, ZHU Yu-Bao, XU Guo-Sheng, M. Asif, GAO Xiang, WAN Bao-Nian. Observation of Magnetohydrodynamics Instabilities in Ion Berstein Wave and Lower-Hybrid-Current Driving Synergetic Discharges on HT-7 Tokamak[J]. Chin. Phys. Lett., 2004, 21(7): 085201
[14] YANG Hong-Ang, JIN Shu-Ping. Effects of Hall Current in the Driven Reconnection with Various Scales[J]. Chin. Phys. Lett., 2004, 21(7): 085201
[15] ZHOU Ai-Ping, LI Xiao-Qing. Magnetic Instability in Accretion Discs with Anomalous Viscosity[J]. Chin. Phys. Lett., 2004, 21(3): 085201
Viewed
Full text


Abstract