Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 084701    DOI: 10.1088/0256-307X/27/8/084701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Numerical Investigation on Inviscid Instability of Streaky Structures in Incompressible Boundary Layer Flow

LIU Jian-Xin, LUO Ji-Sheng

Department of Mechanics, Tianjin University, Tianjin 300072
Cite this article:   
LIU Jian-Xin, LUO Ji-Sheng 2010 Chin. Phys. Lett. 27 084701
Download: PDF(371KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Numerical investigation is made on the effect of streaky structures in transition by inviscid linear disturbance equation with temporal mode. Several disturbances with different streamwise wave numbers were induced, and the evolutions with time step were received. It suggests that the exponential growth and periodic variation of the waves are in existence. As the streamwise wave number increases, the disturbance growth rate begins by increasing, reaches a maximum at around α =0.4 with a disturbance frequency of 0.2186+0.001457i, and then decreases. Furthermore, the eigenfunctions of pressure disturbance are plotted.

Keywords: 47.15.Fe      47.20.Cq     
Received: 06 April 2010      Published: 28 July 2010
PACS:  47.15.Fe (Stability of laminar flows)  
  47.20.Cq (Inviscid instability)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/084701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/084701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jian-Xin
LUO Ji-Sheng
[1] Bradshaw P 1965 J.Fluid. Mech. 22 679
[2] Bakchinov A A et al 1995 Phys. Fluids 7 820
[3] Anderson P et al 2001 J. Fluid. Mech. 428 29
[4] Anderson P, Berggren M and Henningson D S 1999 Phys. Fluids 11 134
[5] Lundbladh A et al 1999 TRITA-MEK Technical Report 1999:11
[6] Matsubara M and Alfredsson P H 2001 J. Fluid. Mech. 430 149
[7] Crow S C 1966 J. Fluid. Mech. 24 153
[8] Waleffe F 1997 Phys. Fluids 9 883
[9] Waleffe F 1995 Stud. Appl. Math. 95 319
[10] Reddy S C, Schmid P J, Baggett J S et al 1998 J. Fluid. Mech. 365 269
[11] Bottaro A and Klingmann B G B 1996 Eur. J. Mech. B: Fluids 15 301
[12] Wu X and Luo J 2003 J. Fluid Mech. 483 225
Related articles from Frontiers Journals
[1] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 084701
[2] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 084701
[3] SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics[J]. Chin. Phys. Lett., 2008, 25(4): 084701
[4] REN Ling, CHEN Jian-Guo, ZHU Ke-Qin. Dual Role of Wall Slip on Linear Stability of Plane Poiseuille Flow[J]. Chin. Phys. Lett., 2008, 25(2): 084701
[5] ZHANG Tian-Tian, JIA Li, WANG Zhi-Cheng. Analytic Solution for Steady Slip Flow between Parallel Plates with Micro-Scale Spacing[J]. Chin. Phys. Lett., 2008, 25(1): 084701
[6] CHEN Jian-Guo, REN Ling, FU Song. Linear Stability of Taylor-Couette Flows with Axial Heat Buoyancy[J]. Chin. Phys. Lett., 2006, 23(8): 084701
[7] MA Dong-Jun, SUN De-Jun, YIN Xie-Yuan. A Global Stability Analysis of the Wake behind a Rotating Circular Cylinder[J]. Chin. Phys. Lett., 2005, 22(8): 084701
[8] ZHU Ke-Qin, REN Ling, LIU Yi. Linear Stability of Flows in a Squeeze Film[J]. Chin. Phys. Lett., 2005, 22(6): 084701
[9] TANG Ze-Mei, HU Wen-Rui. Influence of Aspect Ratio on the Onset of Thermocapillary Oscillatory Convection in a Floating Half Zone of Large Prandtl Number Fluid[J]. Chin. Phys. Lett., 2003, 20(4): 084701
[10] CHEN Qi-sheng, HU Wen-rui. Instability from Steady and Axisymmetric to Steady and Asymmetric Floating Half Zone Convection in a Fat Liquid Bridge of Larger Prandtl Number[J]. Chin. Phys. Lett., 1999, 16(11): 084701
Viewed
Full text


Abstract