ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Effect of Reagent Vibrational and Rotational Excitation on the F+H2 Reaction: Theoretical Study of the Stereodynamics Using Quasi-Classical Trajectory Method |
WANG Ping |
Department of Electronic Engineering, Jinan Vocational College, Jinan 250103 |
|
Cite this article: |
WANG Ping 2010 Chin. Phys. Lett. 27 083401 |
|
|
Abstract The vector correlations in the reaction F+H2 (v=0-3, j=0-3)→ HF(v',j')+H are investigated using the quasi-classical trajectory method on the Stark-Werner potential energy surface at a collision energy of 1.0 eV. The potential distribution P(θr)to angles between k and j', the distribution P(Ør) to dihedral angles, denoting k-k'-j' correlation and the polarization-dependent generalized differential cross sections, are calculated. The effect of reagent vibrational and rotational excitation on the F+H2 reaction is discussed in detail. The results suggest that the different vibrational and rotational quantum states of H2 have different influences on the product polarization.
|
Keywords:
34.10.+x
34.50.-s
|
|
Received: 11 May 2010
Published: 28 July 2010
|
|
PACS: |
34.10.+x
|
(General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))
|
|
34.50.-s
|
(Scattering of atoms and molecules)
|
|
|
|
|
[1] Aoiz F J, Bañares L, Herrero V J, Sáez Rábanos V, Stark K and Werner H J 1994 Chem. Phys. Lett. 223 215 [2] Stark K and Werner H J 1996 J. Chem. Phys. 104 6515 [3] Aoiz F J, Bañares L et al 1997 J. Phys. Chem. A 101 6403 [4] Aoiz F J, Bañares L et al 1996 Chem. Phys. 207 245 [5] Aoiz F J, Bañares L et al 1994 J. Phys. Chem. 98 10665 [6] Aoiz F J, Bañares L, Herrero V J, Sáez Rábanos V, Stark K and Werner H J 1995 J. Chem. Phys. 102 9248 [7] Martínez-Haya B, Aoiz F J, Bañares L, Honvault P and Launay J M 1999 Phys. Chem. Chem. Phys. 1 3415 [8] Han K L et al 1993 Chin. Chem. Lett 4 517 [9] Han K L et al 1996 J. Chem. Phys. 105 8699 [10] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964 [11] Blais N C and Truhlar D G 1977 J. Chem. Phys. 67 1540 [12] Orr-Ewing A J and Zare R N 1994 Annu. Rev. Phys. Chem. 45 315 [13] Chen M D et al 1999 Chem. Phys. Lett. 301 303 [14] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446 [15] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204 [16] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463 [17] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483 [18] Han K L et al 2001 J. Phys. Chem. A 105 2956 [19] Zhang X and Han K L 2005 Int. J. Quantum Chem. 106 1815 [20] Zhang W Q et al 2009 J. Phys. Chem. A 113 4192 [21] Duan L H, Zhang W Q and Chen M D 2010 Chem. Phys. 367 115 [22] Wang X A, Dong W R, Qiu M H, Ren Z F, Che L, Dai D X et al 2008 Proc. Natl. Acad. Sci. U.S.A 205 6227 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|