Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 080506    DOI: 10.1088/0256-307X/27/8/080506
GENERAL |
Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)
XU Jie1, LONG Ke-Ping1, FOURNIER-PRUNARET Danièle2, TAHA Abdel-Kaddous2, CHARGE Pascal2
1School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731 2LATTIS, INSA, Toulouse University, 135 avenue de Rangueil 31077 Toulouse 4, France
Cite this article:   
XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle et al  2010 Chin. Phys. Lett. 27 080506
Download: PDF(1940KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study an N-dimensional system based on a sine square map and analyze the system behaviors of cases of dimension N≥3 with the tools of nonlinear dynamics. In the three-dimensional case, bifurcations in the parameter plane, invariant manifolds, critical manifolds and chaotic attractors are studied. Then we extend this study to the cases of higher dimension (N>3) to understand generalized properties of the system. The analysis and experimental results of the system demonstrate the existence of bounded chaotic orbits, which can be considered for secure transmissions.

Keywords: 05.45.Ac      05.45.Gg      05.45.Pq     
Received: 07 May 2010      Published: 28 July 2010
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/080506       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/080506
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Jie
LONG Ke-Ping
FOURNIER-PRUNARET Danièle
TAHA Abdel-Kaddous
CHARGE Pascal
[1] Larger L et al 2005 J. Opt. Technol. 72 29
[2] Larger L and Fournier-Prunaret D 2005 European Conference on Circuit Theory and Design (Cork, Irlande 28 August-2 September 2005) p 161
[3] Xu J, Chargè P et al 2010 Science in China Series F: Information Sciences 53 129
[4] Xu J, Long K P, Fournier-Prunaret D, Taha A K and Chargè P 2010 Chin. Phys. Lett. 27 020504
[5] Baroudi E 1985 PhD thesis (Université Paul Sabatier) p 65
[6] Mira C, Gardini L, Barugola A and Cathala J C 1996 World Scientific Series A 20 636
[7] Mira C 1987 Chaotic Dynamics (Singapore: World Scientific) chap 1 p 59
[8] Mira C et al 1994 Int. J. Bifur. Chaos Appl. Sci. Engin. 4 343
[9] Gardini L, Mira C, Fournier-Prunaret D 1992 European Conference on Iteration Theory (Batschuns, Austria 14-19 September 1992) p 112
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 080506
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 080506
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 080506
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 080506
[5] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 080506
[6] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 080506
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 080506
[8] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 080506
[9] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 080506
[10] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 080506
[11] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 080506
[12] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 080506
[13] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 080506
[14] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 080506
[15] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 080506
Viewed
Full text


Abstract