Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 080302    DOI: 10.1088/0256-307X/27/8/080302
GENERAL |
Quantum Model of Bertrand Duopoly
Salman Khan, M. Ramzan, M. K. Khan
Department of Physics Quaid-i-Azam University, Islamabad 45320, Pakistan
Cite this article:   
Salman Khan, M. Ramzan, M. K. Khan 2010 Chin. Phys. Lett. 27 080302
Download: PDF(309KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a quantum model of Bertrand duopoly and study the entanglement behavior on the profit functions of the firms. Using the concept of optimal response of each firm to the price of the opponent, we find only one Nash equilibirum point for the maximally entangled initial state. The presence of quantum entanglement in the initial state gives payoffs higher to the firms than the classical payoffs at the Nash equilibrium. As a result, the dilemma-like situation in the classical game is resolved.

Keywords: 03.65.Ta      03.65.-w      03.67.Lx     
Received: 26 January 2010      Published: 28 July 2010
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.-w (Quantum mechanics)  
  03.67.Lx (Quantum computation architectures and implementations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/080302       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/080302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Salman Khan
M. Ramzan
M. K. Khan
[1] Gibbons R 1992 Game Theory for Applied Economists (Princeton, NJ: Princeton University Press)
Bierman H S, Fernandez L 1998 Game Theory with Economic Applications 2nd edn (Reading MA: Addison-Wesley)
[2] Cournot A 1897 Researches into the Mathematical Principles of the Theory of Wealth (New York: Macmillan)
[3] Bertrand J and Savants J 1883 Journal des Savants 67 499
[4] Stackelberg H von 1934 Marktform und Gleichgewicht (Vienna: Springer)
[5] Flitney A P, Ng J and Abbott D 2002 Physica A 314 35
[6] Ramzan M et al 2008 J. Phys. A: Math. Theor. 41 055307
[7] D' Ariano G M 2002 Quantum Information and Computation 2 355
[8] Flitney A P and Abbott D 2002 Phys. Rev. A 65 062318
[9] Iqbal A, Cheo T and Abbott D 2008 Phys. Lett. A 372 6564
[10] Zhu X and Kaung L M 2008 Commun. Theor. Phys. 49 111
[11] Ramzan M and Khan M K 2008 J. Phys. A: Math. Theor. 41 435302
[12] Ramzan M and Khan M K 2009 J. Phys. A: Math. Theor. 42 025301
[13] Zhu X and Kaung L M 2007 J. Phys. A 40 7729
[14] Salman Khan et al 2010 Int. J. Theor. Phys. 49 31
[15] Meyer D A 1999 Phys. Rev. Lett. 82 1052
[16] Eisert J et al 1999 Phys. Rev. Lett. 83 3077
[17] Marinatto L and Weber T 2000 Phys. Lett. A 272 291
[18] Li H, Du J and Massar S 2002 Phys. Lett. A 306 73
[19] Lo C F and Kiang D 2004 Phys. Lett. A 321 94
[20] Iqbal A and Abbott D 2009 arXiv:quant-ph/0909.3369
[21] Iqbal A and Toor A H 2002 Phys. Rev. A 65 052328
[22] Lo C F and Kiang D 2003 Phys. Lett. 318 333
[23] Benjamin S C and Hayden P M 2001 Phys. Rev. A 64 030301
[24] Lo C F and Kiang D 2005 Phys. Lett. A 346 65
[25] Qin G et al 2005 J. Phys. A: Math. Gen. 38 4247
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 080302
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 080302
[3] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 080302
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 080302
[5] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 080302
[6] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 080302
[7] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 080302
[8] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 080302
[9] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 080302
[10] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 080302
[11] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 080302
[12] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 080302
[13] HOU Shi-Yao, CUI Jing-Xin, LI Jun-Lin** . Experimental Realization of Braunstein's Weight-Decision Algorithm[J]. Chin. Phys. Lett., 2011, 28(9): 080302
[14] XIE Yi, ZHOU Fei, CHEN Liang, WAN Wei, FENG Mang** . Micromotion Compensation and Photoionization of Ions in a Linear Trap[J]. Chin. Phys. Lett., 2011, 28(9): 080302
[15] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 080302
Viewed
Full text


Abstract