Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 080301    DOI: 10.1088/0256-307X/27/8/080301
GENERAL |
Decay of Loschmidt Echo at a Critical Point in the Lipkin-Meshkov-Glick model

WANG Ping1, ZHENG Qiang2, WANG Wen-Ge1

1Department of Modern Physics, University of Science and Technology of China, Hefei 230026 2School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001
Cite this article:   
WANG Ping, ZHENG Qiang, WANG Wen-Ge 2010 Chin. Phys. Lett. 27 080301
Download: PDF(407KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An analytical expression of the Loschmidt echo in the Lipkin-Meshkov-Glick model is derived in the thermodynamical limit. It is used in the study of the decaying behaviour of the echo at the critical point of a quantum phase transition of the model. It is shown that the echo has a power law decay for relatively long times.

Keywords: 03.65.-w      05.70.Jk      73.43.Nq     
Received: 24 February 2010      Published: 28 July 2010
PACS:  03.65.-w (Quantum mechanics)  
  05.70.Jk (Critical point phenomena)  
  73.43.Nq (Quantum phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/080301       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/080301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Ping
ZHENG Qiang
WANG Wen-Ge
[1] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University)
[2] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110
    Osterloh A et al 2002 Nature 416 608
[3] Vidal G et al 2003 Phys. Rev. Lett. 90 227902
    Korepin V E 2004 Phys. Rev. Lett. 92 096402
    Levine G C 2004 Phys. Rev. Lett. 93 266402
    Kitaev A and Preskill J 2006 Phys. Rev. Lett. 96 110404
[4] Amico L et al 2008 Rev. Mod. Phys. 80 517
[5] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[6] Zanardi P and PaunkovićN 2006 Phys. Rev. E 74 031123
[7] Campos Venuti L C and Zanardi P 2007 Phys. Rev. Lett. 99 095701
    Zanardi P, Giorda P and Cozzini M 2007 Phys. Rev. Lett. 99 100603 (2007);
    Bounsante P and Vezzani A 2007 Phys. Rev. Lett. 98 110601
    Zhou H Q, Orús R, and Vidal G 2004 Phys. Rev. Lett. 100 080601
[8] Cozzini M, Giorda P and Zanardi P 2007 Phys. Rev. B 75 014439
    Cozzini M, Ionicioiu R and Zanardi P 2007 Phys. Rev. Lett. 76 104420
[9] You W L, Li Y W, and Gu S J 2007 Phys. Rev. E 76 022101
    Chen S, Wang L, Gu S J and Wang Y 2007 Phys. Rev. E 76 061108
    Kwok H M et al 2008 Phys. Rev. E 78 032103
    Gu S J et al 2008 Phys. Rev. B 77 245109
[10] Oelkers N and Links J 2007 Phys. Rev. B 75 115119
    Yang M F 2007 Phys. Rev. B 76 180403(R)
    Tzeng Y C and Yang M F 2008 Phys. Rev. A 77 012311
    Chen S et al 2008 Phys. Rev. A 77 032111
[11] Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 75 012102
    Li Y C and Li S S 2007 Phys. Rev. A 76 032117
[12] Wang W G, Qin P, He L and Wang P 2001 Phys. Rev. E 81 016214
[13] Peres A 1984 Phys. Rev. A 30 1610
[14] Jalabert R A and Pastawski H M 2001 Phys. Rev. Lett. 86 2490
    Benenti G and Casati G 2002 Phys. Rev. E 65 066205
    Gorin T et al 2006 Phys. Rep. 435 33
[15] Wang W G, Casati G and Li B 2004 Phys. Rev. E 69 025201(R)
    Wang W G, Casati G, Li B and Prosen T 2005 Phys. Rev. E 71 037202
    Wang W G and Li B 2005 Phys. Rev. E 71 066203
    Wang W G, Casati G and Li B 2007 Phys. Rev. E 75 016201
    Zheng Q, Wang W G, Qin P, Wang P, Zhang X and Ren Z Z 2009 Phys. Rev. E 80 016214
[16] Lipkin H J, Meshkov N and Glick A J 1965 Nucl. Phys. 62 188
[17] Pan F and Draayer J P 1999 Phys. Rev. B 59 4553
[18] Dusuel S and Vidal J 2005 Phys. Rev. B 71 224420
[19] Ribeiro P, Vidal J and Mosseri R 2008 Phys. Rev. E 78 021106
[20] Kwok H M, Ning W Q, Gu S J and Lin H Q 2008 Phys. Rev. E 78 032103
[21] Latorre J I et al 2005 Phys. Rev. A 71 064101
[22] Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
    Liu T, Zhang Y Y, Chen Q H and Wang K L 2009 Phys. Rev. A 80 023810
    Zhang Y Y, Chen Q H and Wang K L 2010 Phys. Rev. B 81 121105
[23] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 080301
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 080301
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 080301
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 080301
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 080301
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 080301
[7] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 080301
[8] LU Yun-Bin, LIAO Shu-Zhi**, PENG Hao-Jun, ZHANG Chun, ZHOU Hui-Ying, XIE Hao-Wen, OUYANG Yi-Fang, ZHANG Bang-Wei, . Size Model of Critical Temperature for Grain Growth in Nano V and Au[J]. Chin. Phys. Lett., 2011, 28(8): 080301
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 080301
[10] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 080301
[11] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 080301
[12] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 080301
[13] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 080301
[14] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 080301
[15] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 080301
Viewed
Full text


Abstract