Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 080202    DOI: 10.1088/0256-307X/27/8/080202
GENERAL |
A Field Integration Method for a Weakly Nonholonomic System

MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng

Department of Mechanics, Beijing Institute of Technology, Beijing 100081
Cite this article:   
MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng 2010 Chin. Phys. Lett. 27 080202
Download: PDF(263KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A field integration method for a weakly nonholonomic system is studied. The differential equations of motion of the system are established. The approximate solution of the holonomic system corresponding to the weakly nonholonomic system is obtained by using the field method. The restriction of nonholonomic constraint to initial conditions is added and the approximate solution of the weakly nonholonomic system is obtained. An example is given to demonstrate the application of the result.

Keywords: 02.20.Sv      03.20.+i      11.30.-j     
Received: 15 April 2010      Published: 28 July 2010
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  03.20.+i  
  11.30.-j (Symmetry and conservation laws)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/080202       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/080202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MEI Feng-Xiang
CUI Jin-Chao
CHANG Peng
[1] Whittaker E T 1952 A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (New York: Cambridge University)
[2] Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology) (in Chinese)
[3] Vujanovic B 1984 Int. J. Nonlinear Mech. 19 383
[4] Mei F X 1989 Acta Mech. Sin. 5 260 (in Chinese)
[5] Mei F X 1990 Acta Mech. Sin. 6 160 (in Chinese)
[6] Mei F X 2000 Int. J. Nonlinear Mech. 35 229 (in Chinese)
[7] Mei F X 2000 Appl. Mech. Rev. 53 283 (in Chinese)
[8] Wang S Y and Mei F X 2002 Chin. Phys. 11 5 (in Chinese)
[9] Mei F X 1993 Chin. Sci. Bull. 38 281 (in Chinese)
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 080202
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 080202
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 080202
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 080202
[5] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 080202
[6] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 080202
[7] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 080202
[8] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 080202
[9] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 080202
[10] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 080202
[11] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 080202
[12] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 080202
[13] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 080202
[14] TAO Si-Xing, XIA Tie-Cheng. Lie Algebra and Lie Super Algebra for Integrable Couplings of C-KdV Hierarchy[J]. Chin. Phys. Lett., 2010, 27(4): 080202
[15] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 080202
Viewed
Full text


Abstract