Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 080201    DOI: 10.1088/0256-307X/27/8/080201
GENERAL |
Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems

XIA Li-Li1, CAI Jian-Le2

1Department of Physics, Henan Institute of Education, Zhengzhou 450046 2College of Science, Hangzhou Normal University, Hangzhou 310018
Cite this article:   
XIA Li-Li, CAI Jian-Le 2010 Chin. Phys. Lett. 27 080201
Download: PDF(276KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Symmetry of Lagrangians of nonholonomic controllable mechanical systems is studied. The definition and criterion of the symmetry of the system are presented. Under the condition that there exists a conserved quantity, the form of the conserved quantity is provided. An example is presented to illustrate the application of the results.

Keywords: 02.40.-k      45.20.Jj      07.05.Dz     
Received: 26 March 2010      Published: 28 July 2010
PACS:  02.40.-k (Geometry, differential geometry, and topology)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  07.05.Dz (Control systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/080201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/080201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIA Li-Li
CAI Jian-Le
[1] Noether A E 1918 Math. Phys. (Klasse) 235
[2] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[3] Mei F X 2000 J. Beijing Inst. Technol. 9 120
[4] Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[5] Mei F X 1999 Applications of Lie groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[6] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology) (in Chinese)
[7] Luo S K and Zhang Y F et al 2008 Advances in the Study of Dynamics of Constrained Mechanics Systems (Beijing: Science Press) (in Chinese)
[8] Luo S K 2002 Chin. Phys. Lett. 19 449
[9] Luo S K 2003 Chin. Phys. Lett. 20 597
[10] Luo S K 2007 Chin. Phys. Lett. 24 2463
[11] Zheng S W, Xie J F and Zhang Q H 2007 Chin. Phys. Lett. 24 2164
[12] Zhao W J, Weng Y Q and Fu J L 2007 Chin. Phys. Lett. 24 2773
[15] Fang J H, Zhang M J and Lu K 2009 Chin. Phys. Lett. 26 110202
[16] Xia L L and Zhao X L 2009 Chin. Phys. Lett. 26 010203
[17] Currie D G and Saletan E J 1966 J. Math. Phys. 7 967
[18] Hojman S and Harleston H 1981 J. Math. Phys. 22 1414
[19] Zhao Y Y and Mei F X 1999 Symmetries and Invariantsof Mechanical Systems (Beijing: Science Press) (in Chinese)
[20] Mei F X and Wu H B 2008 Phys. Lett. A 372 2141
[21] Mei F X and Wu H B 2009 Acta Phys. Sin. 58 5919 (in Chinese)
[22] Wu H B and Mei F X 2010 Chin. Phys. B 19 030303
[23] Zhang Y and Ge W K 2009 Acta Phys. Sin. 58 7447 (in Chinese)
Related articles from Frontiers Journals
[1] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 080201
[2] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 080201
[3] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 080201
[4] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 080201
[5] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 080201
[6] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 080201
[7] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 080201
[8] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 080201
[9] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 080201
[10] JIA Xiao-Yu, WANG Na. Geometric Approach to Lie Symmetry of Discrete Time Toda Equation[J]. Chin. Phys. Lett., 2009, 26(8): 080201
[11] XUE Yun, SHANG Hui-Lin. Jourdain Principle of a Super-Thin Elastic Rod Dynamics[J]. Chin. Phys. Lett., 2009, 26(7): 080201
[12] XIE Guang-Xi, CUI Jin-Chao, ZHANG Yao-Yu, JIA Li-Qun. Structural Equation and Mei Conserved Quantity of Mei Symmetry for Appell Equations with Redundant Coordinates[J]. Chin. Phys. Lett., 2009, 26(7): 080201
[13] PANG Ting, FANG Jian-Hui, ZHANG Ming-Jiang, LIN Peng, LU Kai. Perturbation to Mei Symmetry and Generalized Mei Adiabatic Invariants for Nonholonomic Systems in Terms of Quasi-Coordinates[J]. Chin. Phys. Lett., 2009, 26(7): 080201
[14] WANG Peng, FANG Jian-Hui, WANG Xian-Ming. Discussion on Perturbation to Weak Noether Symmetry and Adiabatic Invariants for Lagrange Systems[J]. Chin. Phys. Lett., 2009, 26(3): 080201
[15] JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 080201
Viewed
Full text


Abstract