CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Topological Structure of the SU(2) Chern-Simons Topological Current in the Four-Dimensional Quantum Hall Effect |
ZHANG Xiu-Ming1, DUAN Yi-Shi2 |
1Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054 2Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 |
|
Cite this article: |
ZHANG Xiu-Ming, DUAN Yi-Shi 2010 Chin. Phys. Lett. 27 077301 |
|
|
Abstract In the light of the decomposition of the SU(2) gauge potential for I=1/2, we obtain the SU(2) Chern-Simons current over S4, i.e. the vortex current in the effective field for the four-dimensional quantum Hall effect. Similar to the vortex excitations in the two-dimensional quantum Hall effect (2D FQH) which are generated from the zero points of the complex scalar field, in the 4D FQH, we show that the SU(2) Chern-Simons vortices are generated from the zero points of the two-component wave functions Ψ, and their topological charges are quantized in terms of the Hopf indices and Brouwer degrees of Φ-mapping under the condition that the zero points of field Ψ are regular points.
|
Keywords:
73.43.-f
11.15.-q
02.40.Pc
|
|
Received: 21 December 2009
Published: 28 June 2010
|
|
|
|
|
|
[1] Zhang S C and Hu J P 2001 Science 294 823 [2] Belavin A et al 1975 Phys. Lett. B 59 85 [3] Jackiw R and Rebbi C 1976 Phys. Rev. D 14 517 [4] Yang C N 1978 J. Math. Phys. 19 320 [5] Laughlin R B 1983 Phys. Rev. Lett. 50 1395 [6] Haldane F D M 1983 Phys. Rev. Lett. 51 605 [7] Fabinger M 2002 J. High Energy Phys. 05 037 [8] Karabali D and Nair V P 2002 Nucl. Phys. B 641 533 [9] Chen Y X et al 2002 Nucl. Phys. B 638 220 [10] Bernebig B A et al 2003 Phys. Rev. Lett. 91 236803 [11] Murakami S N et al 2003 Science 301 1348 [12] Wolf S A et al 2001 Science 294 1488 Rashba E I 2003 Phys. Rev . B 68 241315 [13] Zhang S C et al 1989 Phys. Rev. Lett. 62 82 [14] Zhang S C 1992 Int. J. Mod. Phys . B 6 25 [15] Bernevig B A et al 2002 Ann. Phys. 300 185 [16] Duan Y S and Meng X H 1993 J. Math. Phys. 34 1149 Duan Y S et al 1998 Nucl. Phys. B 514 705 Li S et al 2000 Phys. Lett . B 487 201 [17] Cho Y M 1980 Phys. Rev. D 21 1080 Cho Y M 1981 Phys. Rev . D 23 2415 Cho Y M 1980 Phys. Rev. Lett. 44 1115 Cho Y M 1981 Phys. Rev. Lett. 46 302 Cho Y M 2001 Phys. Rev. Lett. 87 252001 Cho Y M et al arXiv:hep-th/9905215 Cho Y M arXiv:hep-th/9906198 Cho Y M et al 2001 Phys. Soc. 38 151 Cho Y M arXiv:cond-mat/0112325 Cho Y M arXiv:cond-mat/0112498 [18] Faddeev L and Niemi A J 1997 Nature 387 58 Faddeev L and Niemi A J 1999 Phys. Lett . B 464 90 Faddeev L and Niemi A J 1999 Phys. Lett . B 449 214 Faddeev L and Niemi A J 1999 Phys. Rev. Lett. 82 1624 [19] Zhong W J and Duan Y S 2008 Chin. Phys. Lett. 25 1534 Duan Y S et al 2005 Chin. Phys. Lett. 22 2047 [20] Liang W F et al 2008 Chin. Phys. Lett. 25 4227 [21] Gheorghe1 Z et al 2008 Chin. Phys. Lett. 25 433 [22] Duan Y S 1984 SLAC-PUB-3301 [23] Schouten J A 1951 Tensor Analysis for Physicists (Oxford: Oxford University) [24] Zee A arXiv:cond-mat/9501022
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|