Chin. Phys. Lett.  2010, Vol. 27 Issue (7): 076402    DOI: 10.1088/0256-307X/27/7/076402
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Investigation of the Potts Model on Triangular Lattices by the Second Renormalization of Tensor Network States

WANG Meng-Xiong1,2, CAI Jian-Wei2, XIE Zhi-Yuan3, CHEN Qiao-Ni3, ZHAO Hui-Hai2, WEI Zhong-Chao2

1Institute of Modern Physics, Northwest University, Xian 710075 2Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 3Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190
Cite this article:   
WANG Meng-Xiong, CAI Jian-Wei, XIE Zhi-Yuan et al  2010 Chin. Phys. Lett. 27 076402
Download: PDF(473KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We employ the second renormalization group method of tensor-network states to investigate thermodynamic properties of the ferromagnetic and antiferromagnetic Potts model on triangular lattices. From the temperature dependence of the internal energy and the specific heat, both the critical temperatures and critical exponents are evaluated. For the q=3 antiferromagnetic Potts model, the critical temperature is found to be Tc = 0.627163 ±0.000003, which is at least one order of magnitude more accurate than that obtained by other methods.

Keywords: 64.60.De      05.10.Cc     
Received: 14 April 2010      Published: 28 June 2010
PACS:  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  05.10.Cc (Renormalization group methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/7/076402       OR      https://cpl.iphy.ac.cn/Y2010/V27/I7/076402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Meng-Xiong
CAI Jian-Wei
XIE Zhi-Yuan
CHEN Qiao-Ni
ZHAO Hui-Hai
WEI Zhong-Chao
[1] Potts R B 1952 Proc. Cambridge Philos. Soc. 48 106
[2] Wu F Y 1982 Rev. Mod. Phys. 54 235
[3] Chen T L and Huang W Q 1990 Chin. Phys. Lett. 7 533
[4] Levin M and Nave C P 2007 Phys. Rev. Lett. 99 120601
[5] Xie Z Y, Jiang H C, Chen Q N, Weng Z Y and Xiang T 2009 Phys. Rev. Lett. 103 160601
[6] Zhao H H, Xie Z Y, Chen Q N, Wei Z C, Cai J W and Xiang T 2010 Phys. Rev. B 81 174411
[7] Jiang H C, Weng Z Y and Xiang T 2008 Phys. Rev. Lett. 101 090603
[8] Baxter R J 1973 J. Phys. C 6 L445
[9] Hintermann A, Kunz L H and Wu F Y 1978 J. State Phys. 19 623
[10] Kim D and Joseph R 1974 J. Phys. C 7 L167
[11] Nienhuis B, Berker A N, Riedel E K and Schick M 1979 Phys. Rev. Lett. 43 737
[12] King C and Wu F Y 1997 Int. J. Mod. Phys. B 11 51
[13] Chen J, Hu C and Wu F Y 1998 J. Phys. A: Math. Gen. 31 7855
[14] Baxter R J 1982 Proc. R. Soc. A 383 43
[15] den Nijs M P M, Nightingale M P and Schick M 1982 Phys. Rev. B 26 2490
[16] Wang J, Swendsen R and Kotecky R 1989 Phys. Rev. Lett. 63 109
[17] Ferreira S and Sokal A 1995 Phys. Rev. B 51 6727
[18] Shrock R and Tsai S 1997 J. Phys. A: Math. Gen. 30 495
[19] Schick M and Griffiths R 1977 J. Phys. A: Math. Gen. 10 2123
[20] Adlert J, Brandtt A, Jankes W and Shmulyiant S 1995 J. Phys. A: Math. Gen. 28 5117
[21] Saito Y 1982 J. Phys. A: Math. Gen. 15 1885
[22] Grest G 1981 J. Phys. A: Math. Gen. 14 L217
[23] Enting I G and Wu F Y 1982 J. State Phys. 28 351
[24] Feldmann H, Guttmann A J, Jensen I, Shrock R and Tsai S 1998 J. Phys. A: Math. Gen. 31 2287
[25] Black J L and Emery V J 1982 Phys. Rev. B 23 429
[26] Quilliam J A, Mugford C G A, Gomez A, Kycia S W and Kycia J B 2007 Phys. Rev. Lett. 98 037203
[27] Borgs C and Kotecky R 1992 Phys. Rev. Lett. 68 1734
Related articles from Frontiers Journals
[1] S. Pengmanayol, T. Osotchan, M. Suewattana, N. Ingadapa, J. Girdpun . Hole Mobility of Molecular β-Copper Phthalocyanine Crystal[J]. Chin. Phys. Lett., 2011, 28(8): 076402
[2] WANG Xiao-Hong**, ZHOU Quan . Renormalization Group Analysis of Weakly Rotating Turbulent Flows[J]. Chin. Phys. Lett., 2011, 28(12): 076402
[3] TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation[J]. Chin. Phys. Lett., 2009, 26(6): 076402
[4] H. Demirel, A.Ozkan, B. Kutlu. Finite-Size Scaling Analysis of a Three-Dimensional Blume--Capel Model in the Presence of External Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(7): 076402
[5] LIU Zheng-Feng, WANG Xiao-Hong,. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique[J]. Chin. Phys. Lett., 2008, 25(2): 076402
Viewed
Full text


Abstract