Chin. Phys. Lett.  2010, Vol. 27 Issue (7): 074701    DOI: 10.1088/0256-307X/27/7/074701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator

TIAN Rui-Lan1, CAO Qing-Jie1,2, LI Zhi-Xin1

1Centre for Nonlinear Dynamics Research, Shijiazhuang Tiedao University, Shijiazhuang 050043 2School of Astronautics, Harbin Institute of Technology, Harbin 150001
Cite this article:   
TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin 2010 Chin. Phys. Lett. 27 074701
Download: PDF(342KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the Hopf bifurcations of the recently proposed smooth-and-discontinuous (SD) oscillator which exhibits both smooth and discontinuous dynamics depending on the value of a parameter α. The nonlinearity presented in this system characterizes irrationality and piecewise linearity for smooth and discontinuous cases, respectively, which could not meet the requirements of the conventional methods due to the barrier of Taylor expansion. Introducing a series of new kinds of elliptic integrals of the first and second kind to the perturbed oscillator, we obtain the Poincare-Birchoff normal forms of Hopf bifurcations for both smooth and discontinuous regimes. We also demonstrate the criteria for the occurrence of Hopf bifurcations, the stability of periodic solutions bifurcating from the equilibria and the excellent agreement between the theoretical and numerical results.

Keywords: 47.20.Ky      02.30.Hq     
Received: 24 February 2010      Published: 28 June 2010
PACS:  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  02.30.Hq (Ordinary differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/7/074701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I7/074701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TIAN Rui-Lan
CAO Qing-Jie
LI Zhi-Xin
[1] Hamdan A M A and Hamdan H M A 1993 Electron. Mach. Power. Syst. 21 229
[2] Ruelle D and Takens F 1971 Commun. Math. Phys. 20 167
Ruelle D and Takens F 1971 Commun. Math. Phys. 23 343
[3] Takens F 1973 Diff. Eqns. 14 476
[4] Marsden J E and McCracken M 1976 The Hopf Bifurcation and Its Applications (Berlin: Springer) p 28
[5] Chen G R, Fang J Q, Hong Y G and Qin H S 1999 Acta Phys. Sin. (Overseas Edn) 8 416
[6] Wen G and Xu D 2005 Phys. Lett. A 337 93
[7] Wiggins S 1983 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer) p 273
[8] Liu W 1994 J. Math. Anal. Appl. 182 250
[9] Zhang Q C, He X J and Hao S Y 2006 Trans. Tianjin Univ. 12 180
[10] Yu P and Leung A 2007 Chaos Soliton. Fract. 33 845
[11] Yu P and Leung A 2003 Nonlinearity 16 277
[12] Thompson J M T and Hunt G W 1973 A General Theory of Elastic Stability (London: John Wiley & Sons) p 25
[13] Cao Q J, Wiercigroch M, Pavlovskaia E E, Grebogi C and Thompson J 2006 Phys. Rev. E 74 046218
[14] Cao Q J, Wiercigroch M, Pavlovskaia E, Thompson J and Grebogi C 2008 Phil Trans. R. Soc. A 366 635
[15] Cao Q J, Wiercigroch M, Pavlovskaia E, Grebogi C and Thompson J 2008 Int. J. Nonlin. Mech. 43 462
[16] Tian R L, Cao Q J and Yang S P 2010 Nonlin. Dyn. 59 19
[17] Tufillaro N B 1990 Eur. J. Phys. 11 122
[18] Greenhill A G 1892 The Applications of Elliptic Functions (New York: Macmillan) p 152
[19] Guckenheimer J and Holmes P 1999 Nonlinear Oscillations, Dynamical System, and Bifurcation of Vector Fields (New York: Springer) p 168
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 074701
[2] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 074701
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 074701
[4] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 074701
[5] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 074701
[6] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 074701
[7] GUO Bo-Ling, LING Li-Ming, ** . Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J]. Chin. Phys. Lett., 2011, 28(11): 074701
[8] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 074701
[9] BAO Chun-Yu, TANG Chao, YIN Xie-Zhen, LU Xi-Yun. Flutter of Finite-Span Flexible Plates in Uniform Flow[J]. Chin. Phys. Lett., 2010, 27(6): 074701
[10] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 074701
[11] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 074701
[12] R. C. Aziz, I. Hashim** . Liquid Film on Unsteady Stretching Sheet with General Surface Temperature and Viscous Dissipation[J]. Chin. Phys. Lett., 2010, 27(11): 074701
[13] Osama Yusuf Ababneh, Rokiah@Rozita Ahmad. Construction of Third-Order Diagonal Implicit Runge-Kutta Methods for Stiff Problems[J]. Chin. Phys. Lett., 2009, 26(8): 074701
[14] ZHAO Wei, LU Ke-Qing, ZHANG Yi-Qi, YANG Yan-Long, WANG Yi-Shan, LIUXue-Ming. Intermediate Self-similar Solutions of the Nonlinear Schrödinger Equation with an Arbitrary Longitudinal Gain Profile[J]. Chin. Phys. Lett., 2009, 26(4): 074701
[15] ZHANG Hua-Yan, RAN Zheng. Lie Symmetry and Nonlinear Instability in Computation of KdV Solitons[J]. Chin. Phys. Lett., 2009, 26(3): 074701
Viewed
Full text


Abstract