FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Symmetric and Anti-Symmetric Lamb Waves in a Two-Dimensional Phononic Crystal Plate |
LI Yong1, HOU Zhi-Lin1, FU Xiu-Jun1, Badreddine M Assouar2 |
1Department of Physics, South China University of Technology, Guangzhou 510640 2Institut Jean Lamour (UHP-CNRS) UMR 7198, Déartement Physique de la Matiére et des Matériaux (P2M), France |
|
Cite this article: |
LI Yong, HOU Zhi-Lin, FU Xiu-Jun et al 2010 Chin. Phys. Lett. 27 074303 |
|
|
Abstract It is well known that Lamb waves in a plate with a mirror plane can be separated into two uncoupled sets: symmetric and anti-symmetric modes. Based on this property, we present a revised plane wave expansion method (PWE) to calculate the band structure of a phononic crystal (PC) plate with a mirror plane. The developed PWE method can be used to calculate the band structure of symmetric and anti-symmetric modes separately, by which the depending relationship between the partial acoustic band gap (PABG), which belongs to the symmetric and anti-symmetric modes alternatively, and the position of the scatterers can be determined. As an example of its application, the band structure of the Lamb modes in a two-dimensional PC plate with two layers of void circular inclusions is investigated. The results show that the band structure for the symmetric and anti-symmetric modes can be changed by the position of the scatterers drastically, and larger PABGs will be opened when the scatterers are inserted into the area of the plate, where the elastic potential energy is concentrated.
|
Keywords:
43.20.+g
43.35.+d
77.65.Dq
|
|
Received: 24 March 2010
Published: 28 June 2010
|
|
PACS: |
43.20.+g
|
(General linear acoustics)
|
|
43.35.+d
|
(Ultrasonics, quantum acoustics, and physical effects of sound)
|
|
77.65.Dq
|
(Acoustoelectric effects and surface acoustic waves (SAW) in piezoelectrics)
|
|
|
|
|
[1] Kushwaha M et al 1993 Phys. Rev. Lett. 71 2022 [2] Sigalas M and Economou E N 1992 J. Sound Vibr. 158 377 [3] Laude V et al 2005 Phys. Rev. E 71 036607 [4] Chen J J et al 2008 Phys. Rev. E 78 036609 [5] Zhong N H et al 2005 Phys. Lett. A 339 164-170 [6] Dong H F et al 2010 J. Phys. D: Appl. Phys. 43 105404 [7] Fang N Y et al 2008 Chin. Phys. Lett. 25 2922-2925 [8] Hou Z L et al 2008 Phys. Lett. A 372 2091-2097 [9] Hou Z L et al 2008 J. Phys. D: Appl. Phys. 41 095103 [10] Hou Z L et al 2008 J. Phys. D: Appl. Phys. 41 215102 [11] Hou Z L et al 2009 J. Phys. D: Appl. Phys. 42 085103 [12] Lai Y and Zhang Z Q 2003 Appl. Phys. Lett. 83 3900 [13] Gao J et al 2008 Appl. Phys. Lett. 92 023510 [14] Vasseur J O et al 2007 J. Appl. Phys. 101 114904 [15] Sun J H and Wu T T 2007 Phys. Rev. B 76 104304 [16] Chen J J et al 2006 Phys. Rev. B 73 094307 [17] Hsiao F L et al 2007 Phys. Rev. E 76 056601 [18] Brunet T et al 2008 J. Appl. Phys. 104 043506 [19] Bonello B et al 2007 Appl. Phys. Lett. 90 021909 [20] Wu T T et al 2008 Appl. Phys. Lett. 93 111902 [21] Benchabane S et al 2006 Phys. Rev. E 73 065601(R) [22] Mohammadi S et al 2008 Appl. Phys. Lett. 92 221905 [23] Auld B A 1973 Acoustic Fields and Waves in Solids 2nd edn (New York: Wiley) vol 2 [24] Rose J L 1999 Ultrasonic Waves in Solid Media (London: Cambridge University)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|