Chin. Phys. Lett.  2010, Vol. 27 Issue (7): 071201    DOI: 10.1088/0256-307X/27/7/071201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Grand Unified Yukawa Matrix Ansatz: The Standard Model Fermion Mass, Quark Mixing and CP Violation Parameters

ZHANG Yong-Chao, ZHANG De-Hai

College of Physical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
ZHANG Yong-Chao, ZHANG De-Hai 2010 Chin. Phys. Lett. 27 071201
Download: PDF(333KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a new mass matrix ansatz: At the grand unified (GU) scale, the standard model (SM) Yukawa coupling matrix elements are integer powers of the square root of the GU gauge coupling constant ε≡√αGU , multiplied by order unity random complex numbers. It relates the hierarchy of the SM fermion masses and quark mixings to the gauge coupling constants, greatly reducing the SM parameters, and can give good fitting results of the SM fermion mass, quark mixing and CP violation parameters. This is a neat but very effective ansatz.

Keywords: 12.10.Kt      12.15.Ff      11.10.Hi     
Received: 02 March 2010      Published: 28 June 2010
PACS:  12.10.Kt (Unification of couplings; mass relations)  
  12.15.Ff (Quark and lepton masses and mixing)  
  11.10.Hi (Renormalization group evolution of parameters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/7/071201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I7/071201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yong-Chao
ZHANG De-Hai
[1] Amsler C et al [Particle Data Group] 2008 Phys. Lett. B 667 1
[2] Xing Z Z, Zhang H and Zhou S 2008 Phys. Rev. D 77 113016
[3] Wolfenstein L 1983 Phys. Rev. Lett. 51 1945
[4] Cabibbo N 1963 Phys. Rev. Lett. 10 531
Kobayashi M and Maskawa T 1973 Prog. Theor. Phys. 49 652
[5] Froggatt C D and Nielsen H B 1979 Nucl. Phys. B 147 277
[6] Froggatt C D and Nielsen H B 1979 Nucl. Phys. B 164 114
Froggatt C D and Nielsen H B 2003 Surveys High Energy Phys. 18 55
[7] Dimopoulos S, Hall L J and Raby S 1992 Phys. Rev. D 45 4192
Dimopoulos S, Hall L J and Raby S 1992 Phys. Rev. Lett. 68 1984
Giudice G F 1992 Mod. Phys. Lett. A 7 2429
Babu K S and Shafi Q arXiv:hep-ph/9209214
Ramond P, Roberts R G and Ross G G 1993 Nucl. Phys. B 406 19
Leurer M, Nir Y, and Seiberg N 1994 Nucl. Phys. B 420 468
Ibanez L E and Ross G G 1994 Phys. Lett. B 332 100
Barbieri R, Dvali G and Hall L 1996 Phys. Lett. B 377 76
Chun E J and Lukas A 1996 phys. lett. B 387 99
Chkareuli J L and Froggatt C D 1999 Phys. Lett. B 450 158
Fritzsch H and Xing Z Z 2000 Prog. Part. Ncul. Phys. 45 1
Chkareuli J L, Froggatt C D and Nielsen H B 2002 Nucl. Phys. B 626 307
[8] Georgi H and Jarlskog C 1979 Phys. Lett. B 86 297
[9] Fritzsch H 1977 Phys. Lett. B 70 436
Fritzsch H 1978 Phys. Lett. B 73 317
Fritzsch H 1979 Nucl. Phys. B 155 189
Kitazoe T and Tanaka K 1978 Phys. Rev. D 18 3476
Harvey J A, Ramond P and Reiss D B 1980 Phys. Lett. B 92 309
Harvey J A, Ramond P and Reiss D B 1982 Nucl. Phys. B 199 223
[10] Gatto R, Sartori G and Tonin M 1968 Phys. Lett. B 28 128
Oakes R J 1969 Phys. Lett. B 29 683
Chanowitz M S, Ellis J R and Gaillard M K 1977 Nucl. Phys. B 128 506
Wilczek F and Zee Z 1977 Phys. Lett. B 70 418
Weinberg S 1977 Trans. New York Acad. Sci. 38 185
De Rújula A, Georgi H and Glashow S L 1977 Ann. Phys. 109 258
Buras A J et al 1978 Nucl. Phys. B 135 66
Hagiwara T et al 1978 Phys. Lett. B 76 602
Arason H et al 1993 Phys. Rev. D 47 232
Hall L J and Rasin A 1993 Phys. Lett. B 315 164
[11] Heckman J J and Vafa C arXiv:0811.2417 [hep-th]
Heckman J J and Vafa C arXiv:0904.3101 [hep-th]
Cecotti S et al arXiv:0910.0477 [hep-th]
[12] Gibbons et al 2009 Phys. Rev. Lett. 102 121802
[13] Hall L J, Salem M P and Watari T 2007 Phys. Rev. D 76 093001
[14] Nelson A E and Strassler 2000 Journal of High Energy Physics 0009 030
[15] Choi K S 2008 Phys. Lett. B 668 392
[16] Froggatt C D, Nielsen H B and Smith D J 1996 Phys. Lett. B 385 150
[17] Barger V D, Berger M S and Ohmann P 1993 Phys. Rev. D 47 1093
[18] Arason H et al 1992 Phys. Rev. D 46 3945
Castaño D J, Piard E J and Ramond P 1994 Phys. Rev. D 49 4882
[19] Antusch S and Spinrath M 2008 Phys. Rev. D 78 075020
Related articles from Frontiers Journals
[1] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 071201
[2] YANG Hai-Jun, CHEN Guo-Ming, YANG Min, XIONG Zhao-Hua, LU Liang, LU Yu-Sheng, CHEN He-Sheng, TANG Xiao-Wei, Martin Pohl*, JIN Bing-Nian* . Single W Boson Production at √s = 189 GeV[J]. Chin. Phys. Lett., 2000, 17(4): 071201
[3] ZHANG Jian-Zu. Unified Explanation of Quark-Lepton Mass Spectra in q-Deformed Quantum Mechanics[J]. Chin. Phys. Lett., 2000, 17(2): 071201
[4] B. P. Nigam. Perturbative Quantum Chromodynamics αs4-Order Corrections to the Ratio R for τ Decay[J]. Chin. Phys. Lett., 1998, 15(10): 071201
[5] CHEN Shaomin, YAN Wuguang, LI Jin, ZHENG Zipeng. Possible vT Mass Measurement Study at Beijing Spectrometer[J]. Chin. Phys. Lett., 1994, 11(5): 071201
Viewed
Full text


Abstract