Chin. Phys. Lett.  2010, Vol. 27 Issue (7): 070503    DOI: 10.1088/0256-307X/27/7/070503
GENERAL |
Intermittent Chaotic Neural Firing Characterized by Non-Smooth Features

WANG Dong1, MO Juan1, ZHAO Xiao-Yan1, GU Hua-Guang1, QU Shi-Xian2, REN Wei1

1College of Life Science, Shaanxi Normal University, Xi'an 710062 2College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062
Cite this article:   
WANG Dong, MO Juan, ZHAO Xiao-Yan et al  2010 Chin. Phys. Lett. 27 070503
Download: PDF(3152KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A chaotic firing pattern, characterized by non-smooth features and generated through the routine of intermittency from period 3, is observed in biological experiments on a neural firing pacemaker and reproduced in simulations by using a theoretical neuronal model with multiple time scales. This chaotic activity exhibits a scale law very similar to those of both the type-I intermittency generated in smooth systems and the type-V intermittency in non-smooth systems.

Keywords: 05.45.-a      87.19.L-     
Received: 24 February 2010      Published: 28 June 2010
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.19.L- (Neuroscience)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/7/070503       OR      https://cpl.iphy.ac.cn/Y2010/V27/I7/070503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Dong
MO Juan
ZHAO Xiao-Yan
GU Hua-Guang
QU Shi-Xian
REN Wei
[1] Stark J and Hardy K 2003 Science 301 1192
[2] Eckmann J P 1981 Rev. Mod. Phys. 53 643
[3] Mayer-Kress G and Haken H 1981 Phys. Lett. A 82 151
[4] King C C 1991 Prog. Neurobiol. 36 279
[5] Faure P and Korn H 2001 C. R. Acad. Sci.Ⅲ 324 773
[6] Ren W, Hu S J, Zhang B J, Wang F Z, Gong Y F and Xu J X 1997 Int. J. Bifur. Chaos 7 1867
[7] Korn H and Faure P 2003 C. R. Biol. 326 787
[8] Stam C J 2005 Clin. Neurophysiol. 116 2266
[9] Tian L and Xu G 2007 Int. J. Bifur. Chaos 17 271
[10] Qin Z Y and Lu Q S 2007 Chin. Phys. Lett. 24 886
[11] Wu S G and He D R 2001 J. Phys. Soc. Jpn. 70 69
[12] Wu S G and He D R 2000 Chin. Phys. Lett. 17 398
[13] Wu S G and He D R 2001 Commun. Theor. Phys. 35 272
[14] Wu X B, Mo J, Yang M H, Zheng Q H, Gu H G and Ren W 2008 Chin. Phys. Lett. 25 2799
[15] Li L, Gu H G, Yang M H, Liu Z Q and Ren W 2004 Int. J. Bifur. Chaos 14 1813
[16] Gu H G, Ren W, Lu Q S, Wu S G, Yang M H and Chen W J 2001 Phys. Lett. A 285 63
[17] Zheng Q H, Liu Z Q, Yang M H, Wu X B, Gu H G and Ren W 2009 Phys. Lett. A 373 540
[18] Chay T R 1985 Physica D 16 233
[19] Pomeau Y and Manneville P 1980 Commun. Math. Phys. 74 189
[20] Bauer M, Habip S, He D R and Martienssen W 1992 Phys. Rev. Lett. 68 1625
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 070503
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 070503
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 070503
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 070503
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 070503
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 070503
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 070503
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 070503
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 070503
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 070503
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 070503
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 070503
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 070503
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 070503
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 070503
Viewed
Full text


Abstract