Chin. Phys. Lett.  2010, Vol. 27 Issue (7): 070502    DOI: 10.1088/0256-307X/27/7/070502
GENERAL |
Cross Soliton-Like Waves for the (2+1)-Dimensional Breaking Soliton Equation

LÜ Zhuo-Sheng1, DUAN Li-Xia2, XIE Fu-Ding3


1School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 2School of Science, North China University of Technology, Beijing 100041 3Department of Computer Science, Liaoning Normal University, Dalian 116029
Cite this article:   
LÜ, Zhuo-Sheng, DUAN Li-Xia et al  2010 Chin. Phys. Lett. 27 070502
Download: PDF(1779KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We construct a two-soliton-like solution for the (2+1)-dimensional breaking soliton equation. The obtained solution contains two arbitrary functions and hence can model various cross soliton-like waves including the two-solitary waves. We show the evolution of some special cross soliton-like waves diagrammatically.

Keywords: 05.45.Yv      02.30.Jr     
Received: 15 March 2010      Published: 28 June 2010
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/7/070502       OR      https://cpl.iphy.ac.cn/Y2010/V27/I7/070502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhuo-Sheng
DUAN Li-Xia
XIE Fu-Ding
[1] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
[2] Hirota R 1971 Phys. Rev. Lett. 27 1192
[3] Lan H B and Wang K L 1990 J. Phys. A: Math Gen 23 3923
Wang M L 1995 Phys. Lett. A 199 169
Yan C T 1996 Phys. Lett. A 224 77
Ma W X 1996 Int. J. Non-Linear Mech. 31 329
Gao Y T and Tian B 1997 Comput. Math. Appl. 33 115
Fan E G 2000 Phys. Lett. A 277 212
Yan Z Y and Zhang H Q 2001 Phys. Lett. A 285 355
Liu S K, Fu Z T, Liu S D and Zhao Q 2001 Phys. Lett. A 289 69
Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601
Lü Z S and Zhang H Q 2003 Phys. Lett. A 307 269
Wang M L and Li X Z, 2005 Phys. Lett. A 343 48
[4] Calogero F and Degasperis A 1977 Nuovo Cimento B 39 1
[5] Bogoyavlenskii O I, 1990 Russ. Math. Surv. 45 1
[6] Li Y S 1992 Proceeding of the XXI International Confernce (Tianjin, China)
[7] Li Y S and Zhang Y J 1993 J. Phys. A: Math Gen 26 7487
[8] Hu X B and Lou S Y 2000 Proc. Inst. Math. Nat. Acad. Sci. Ukraine 30 120
[9] Lou S Y, Tang X Y, Liu Q P and Fukuyamae T 2002 Z. Natureforsch. A 57 737
[10] Bogoyavlensky O I 1990 Math. USSR Izvestiya 34 245
[11] Su T, Geng X G and Ma Y L 2007 Chin. Phys. Lett. 24 305
[12] Geng X G and Cao C W 2004 Chaos Solitons Fract. 22 683
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 070502
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 070502
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 070502
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 070502
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 070502
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 070502
[12] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 070502
[13] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 070502
[14] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 070502
[15] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 070502
Viewed
Full text


Abstract