Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 068701    DOI: 10.1088/0256-307X/27/6/068701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Simulation of the Second Grade Fluid Model for Blood Flow through a Tapered Artery with a Stenosis

S. Nadeem, Noreen Sher Akbar

Department of Mathematics, Quaid-i-Azam University, Islamabad 44000, Pakistan
Cite this article:   
S. Nadeem, Noreen Sher Akbar 2010 Chin. Phys. Lett. 27 068701
Download: PDF(414KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We analyze the blood flow through a tapered artery, assuming the blood to be a second order fluid model. The resulting nonlinear implicit system of partial differential equations is solved by the perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The physical behavior of different parameters is also discussed, as are trapping phenomena.

Keywords: 87.90.+y      47.10.-g     
Received: 23 December 2009      Published: 25 May 2010
PACS:  87.90.+y (Other topics in biological and medical physics)  
  47.10.-g (General theory in fluid dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/068701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/068701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Nadeem
Noreen Sher Akbar
[1] Figueroa C A, Irene E, Kenneth E, Jansen C, Thomas J R, Charles A 2006 Comput. Meth. Appl. Mech. Engrg. 195 5685
[2] Liu B, Tang D 2000 Appl. Numer. Math. 32 87
[3] Mekheimer Kh S and El Kot M A 2008 Appl. Math. and Mech. 29 1093
[4] Mekheimer Kh S and El Kot M A 2008 Acta. Mech. Sin. 24 637
[5] Misra J C and Shit G C 2007 J. Comput. technol. 4 12
[6] Liu G, Wang X, Ai B and Liu L 2004 Chin. J. Phys. 24 1
[7] Massoudi M, Phuoc T 2008 Comput. Math. Appl. 56 199
[8] Liu B 2007 Medical. Eng. Phys. 29 868
[9] Yeleswarapu K K, Kamaneva M V, Rajagopal K R and Antaki J F 1998 Mech. Res. Commun. 25 257
[10] Yeleswarapu K K 1996 Ph.D. Dissertation (Pittsburgh: University of Pittsburgh)
[11] Haldar K and Andresson H I 1996 Acta. Mech. 117 221
[12] Mandal P K 2005 Int. J. Nonlin. Mech. 40 151
[13] Mandal P K 2007 Appl. Math. Comput. 189 766
[14] Sankar D S and Hemalatha K 2006 Int. J. Nonlin. Mech. 41 979
[15] Cho Y I and Kensey K R 1991 Biorheology 28 241
[16] Dunn J E and Fosdick R L 1974 Arch. Ration. Mech. Anal. 56 191
Related articles from Frontiers Journals
[1] Arbab I. Arbab, Hisham. M. Widatallah. On the Generalized Continuity Equation[J]. Chin. Phys. Lett., 2010, 27(8): 068701
[2] TAN Yun-Liang, TENG Gui-Rong, ZHANG Ze. A Modified LBM Model for Simulating Gas Seepage in Fissured Coal Considering Klinkenberg Effects and Adsorbability-Desorbability[J]. Chin. Phys. Lett., 2010, 27(1): 068701
[3] XIA Yong, LU De-Tang, LIU Yang, XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder[J]. Chin. Phys. Lett., 2009, 26(3): 068701
[4] LIU Ping, LOU Sen-Yue,. A (2+1)-Dimensional Displacement Shallow Water Wave System[J]. Chin. Phys. Lett., 2008, 25(9): 068701
[5] LI Hua-Bing, JIN Li, QIU Bing. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice[J]. Chin. Phys. Lett., 2008, 25(11): 068701
[6] ZHANG Yi, HU Jun, WU Shi-Ying, AI Xiao-Bai, LI Min-Qian. Experiments and Models of DNA Nano-Catenary Patterns Manipulated by Liquid Flow[J]. Chin. Phys. Lett., 2002, 19(3): 068701
[7] LI Hui, LU Zu-kang, LIN Lei, XIE Shu-sen. Light Scattering Properties of Biotissue Versus Equivalent Particle Size Distribution[J]. Chin. Phys. Lett., 1999, 16(4): 068701
Viewed
Full text


Abstract