Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 067305    DOI: 10.1088/0256-307X/27/6/067305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spin-charge Separation of the Luttinger Model after an Interaction Quench

ZHOU Zong-Li1, ZHANG Guo-Shun1, LOU Ping2,3

1School of Science, Anhui Agricultural University, Hefei 230036 2School of Physics and Material Science, Anhui University, Hefei 230039 3Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
Cite this article:   
ZHOU Zong-Li, ZHANG Guo-Shun, LOU Ping 2010 Chin. Phys. Lett. 27 067305
Download: PDF(335KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A Luttinger model of spin-½ fermions is considered after the interaction is suddenly switched on at time t=0. By means of the bosonization technique, we evaluate analytically the one-particle correlation functions in detail, mainly involving equal-time correlations and propagators. The critical exponent which governs the power-law behavior of equal-time correlations for this spinful non-equilibrium system is obtained. In comparison with the published results, the difference between critical exponents of correlations in spinful and spinless non-equilibrium systems is found and explained. Furthermore, it is found that the propagator exhibits different power-law behavior from other equal-time correlations in this non-equilibrium system.

Keywords: 73.43.Nq      11.25.Hf. 64.60.Ht     
Received: 13 January 2010      Published: 25 May 2010
PACS:  73.43.Nq (Quantum phase transitions)  
  11.25.Hf. 64.60.Ht  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/067305       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/067305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Zong-Li
ZHANG Guo-Shun
LOU Ping
[1] Loftus T, Regal C A, Ticknor C, Bohn J L and Jin D S 2002 Phys. Rev. Lett. 88 173201
[2] Greiner M et al 2002 Nature 415 39
[3] Zhu F Y et al 2009 Chin. Phys. Lett. 26 050301
[4] Zheng Z H and Shen D Z 2007 Chin. Phys. Lett. 24 , 2380
[5] Calabrese P and Cardy J 2006 Phys. Rev. Lett. 96 136801
[6] Rigol M, Muramatsu A and Olshanii M 2006 Phys. Rev. A 74 053616
[7] Cazalilla M A 2006 Phys. Rev. Lett. 97 156403
[8] Öztürk M K and Özcelik S 2004 Chin. Phys. Lett. 21 2395
[9] Perfetto E 2006 Phys. Rev. B 74 205123
[10] Moeckel M and Kehrein S 2008 Phys. Rev. Lett. 100 175702
[11] Liu H, Hou D F and Li J R 2007 Chin. Phys. Lett. 24 1191
[12] Roberts J L, Claussen N R, Burke J P Jr, Greene C H,Cornell E A and Wieman C E 1998 Phys. Rev. Lett. 81 5109
[13] Roberts J L, Burke J P Jr, Claussen N R, Cornish S L,Donley E A and Wieman C E 2001 Phys. Rev. A 64 024702
[14] Chin C, VuleticV, Kerman A J and Chu S 2001 Phys. Rev. Lett. 85 2717
[15] Hackl A and Kehrein S 2008 Phys. Rev. B 78 092303
[16] Zhong H W, Xu H Q and Huang P H 2008 Chin. Phys. Lett. 25 2758
[17] Yuzbashyan E A, Tsyplyatyev O and Altshuler B L 2006 Phys. Rev. Lett. 96 097005
[18] Warner G L and Leggett A J 2005 Phys. Rev. B 71 134514
[19] Shao Y Z, Lai J K L, Shek C H, Lin G M and Lan T 2002 Chin. Phys. Lett. 19 1344
[20] Calabrese P and Cardy J 2007 J. Stat.Mech 0706 8
[21] Haldane F D M 1981 J. Phys. C: Solid State Phys. 14 2585
[22] Haldane F D M 1980 Phys. Rev. 45 1358
[23] Haldane F D M 1981 Phys. Rev. 47 1840
[24] Delft J V and Schoeller H 1998 Ann. Phys. Lpz. 7 225
[25] Luther A and Peschel I 1974 Phys. Rev. B 9 2911
[26] Jagla E A, Hallberg K and Balseiro C A 1993 Phys. Rev. B 47 5849
[27] Voit J 1995 Rep. Prog. Phys. 58 977
[28] Voit J 1993 J. Phys.: Condens. Matter 5 8305
Related articles from Frontiers Journals
[1] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 067305
[2] WANG Ping, ZHENG Qiang, WANG Wen-Ge. Decay of Loschmidt Echo at a Critical Point in the Lipkin-Meshkov-Glick model[J]. Chin. Phys. Lett., 2010, 27(8): 067305
[3] ZHONG Hong-Wei, XU Hai-Qing, HUANG Ping-Hua. Time-Dependent Variational Approach to Ground-State Phase Transition and Phonon Dispersion Relation of the Quantum Double-Well Model[J]. Chin. Phys. Lett., 2008, 25(8): 067305
[4] TU Tao, ZHAO Yong-Jie GUO Guo-Ping, HAO Xiao-Jie, GUO Guang-Can. Form of Scaling Function in Quantum Hall Plateau Transitions[J]. Chin. Phys. Lett., 2007, 24(5): 067305
[5] GU Shi-Jian, TIAN Guang-Shan, LIN Hai-Qing. Pairwise Entanglement and Quantum Phase Transitions in Spin Systems[J]. Chin. Phys. Lett., 2007, 24(10): 067305
[6] PANG Chao-Yang, LI Yu-Liang. Dynamics of Genuine Three-Qubit Entanglement in Ising Spin Systems[J]. Chin. Phys. Lett., 2006, 23(12): 067305
Viewed
Full text


Abstract