CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Noncommutative Chern-Simons Description of the Fractional Quantum Hall Edge |
HUANG Wei, WANG Zhao-Long, YAN Mu-Lin |
Interdisciplinary Center for Theoretical Study, Department of Modern Physics, University of Science and Technology of China, Hefei 230026 |
|
Cite this article: |
HUANG Wei, WANG Zhao-Long, YAN Mu-Lin 2010 Chin. Phys. Lett. 27 067304 |
|
|
Abstract Noncommutative Chern-Simons (NCCS) theory is a workable description for the fractional quantum Hall fluid. We apply and generalize the NCCS theory to the physically important case with an edge. From relabeling symmetry of electrons and incompressibility of the fluid, we obtain a constraint and reduce the two-dimensional NCCS theory to a one-dimensional chiral Tomonaga-Luttinger liquid theory, which contains additional interaction terms. Further, we calculate one-loop corrections to the boson and electron propagators and obtain a new tunneling exponent, which agrees with experiments.
|
Keywords:
73.43.-f
71.10.Pm
11.10.Nx
|
|
Received: 15 March 2010
Published: 25 May 2010
|
|
PACS: |
73.43.-f
|
(Quantum Hall effects)
|
|
71.10.Pm
|
(Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))
|
|
11.10.Nx
|
(Noncommutative field theory)
|
|
|
|
|
[1] Wen X G 1990 Phys. Rev. B 41 12838 [2] Wen X G 1992 Int. J. Mod. Phys. B 6 1711 [3] Wen X G 2004 Quantum Field Theory Of Many-Body Systems (Oxford: Oxford University) [4] Chang A M, Pfeiffer L N and West K W 1996 Phys. Rev. Lett. 77 2538 [5] Grayson M et al 1998 Phys. Rev. Lett. 80 1062 [6] Chang A M et al 2001 Phys. Rev. Lett. 86 143 [7] Chang A M 2003 Rev. Mod. Phys. 75 1449 [8] Chamon C and Wen X G 1994 Phys. Rev. B 49 8227 [9] Wan X, Yang K and Rezayi E H 2002 Phys. Rev. Lett. 88 056802 [10] Orgad D and Agam O 2008 Phys. Rev. Lett. 100 156802 [11] Goldman V J and Tsiper E V 2001 Phys. Rev. Lett. 86 5841 [12] Mandal S S and Jain J K 2002 Phys. Rev. Lett. 89 096801 [13] Zülicke U, Palacios J J and MacDonald A H 2003 Phys. Rev. B 67 045303 [14] Jolad S and Jain J K 2009 Phys. Rev. Lett. 102 116801 [15] Susskind L 2001 arXiv:hep-th/0101029 [16] Polychronakos A P 2001 J. High Energy Phys. 0104 011 [17] Hellerman S and Van Raamsdonk M 2001 J. High Energy Phys. 0110 039 [18] Karabali D and Sakita B 2001 Phys. Rev. B 64 245316 [19] Cappelli A and Rodriguez I D 2006 J. High Energy Phys. 0612 056 [20] Wang Z L, Huang W and Yan M L 2008 arXiv:0803.0826 [21] Cabra D C and Grandi N E 2008 Phys. Rev. B 77 115107 [22] Laughlin R B 1983 Phys. Rev. Lett. 50 1395 [23] 't Hooft G and Veltman M J G 1974 NATO Adv. Study Inst. B 4 177 [24] Han Y W et al 2008 Chin. Phys. Lett. 25 2211 8194;8194;8194;8194;Peng D J et al 2007 Chin. Phys. Lett. 24 520 8194;8194;8194;8194;Huang W et al 2008 Chin. Phys. C 32 342
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|